
NASA/TP-2007-214608

Incorporation of Half-Cycle Theory Into Ko
Aging Theory for Aerostructural Flight-Life
Predictions

William L. Ko, Van T. Tran, and Tony Chen
NASA Dryden Flight Research Center
Edwards, California

January 2007

NASA STI Program ... in Profile
Since its founding, NASA has been dedicated
to the advancement of aeronautics and space
science. The NASA scientific and technical
information (STI) program plays a key part in
helping NASA maintain this important role.

The NASA STI program is operated under the
auspices of the Agency Chief Information Officer.
It collects, organizes, provides for archiving,
and disseminates NASA’s STI. The NASA
STI program provides access to the NASA
Aeronautics and Space Database and its public
interface, the NASA Technical Report Server,
thus providing one of the largest collections of
aeronautical and space science STI in the world.
Results are published in both non-NASA channels
and by NASA in the NASA STI Report Series,
which includes the following report types:

	 TECHNICAL PUBLICATION. Reports 	
	 of completed research or a major significant 	
	 phase of research that present the results of 	
	 NASA programs and include extensive data 	
	 or theoretical analysis. Includes compilations 	
	 of significant scientific and technical data 	
	 and information deemed to be of continuing 	
	 reference value. NASA counterpart of peer-	
	 reviewed formal professional papers but has 	
	 less stringent limitations on manuscript 	
	 length and extent of graphic presentations.

		 TECHNICAL MEMORANDUM. Scientific 	
		 and technical findings that are preliminary 	
		 or of specialized interest, e.g., quick release 	
		 reports, working papers, and bibliographies 	
		 that contain minimal annotation. Does not 	
		 contain extensive analysis.

		 CONTRACTOR REPORT. Scientific and
		 technical findings by NASA-sponsored 	
		 contractors and grantees.

•

•

•

	 CONFERENCE PUBLICATION. Collected
	 papers from scientific and technical 		
	 conferences, symposia, seminars, or other 	
	 meetings sponsored or cosponsored by 		
	 NASA.

		 SPECIAL PUBLICATION. Scientific,
		 technical, or historical information from 	
		 NASA programs, projects, and missions, 	
		 often concerned with subjects having 		
		 substantial public interest.

		 TECHNICAL TRANSLATION. English-	
		 language translations of foreign scientific

		 and technical material pertinent to
		 NASA’s mission.

Specialized services also include creating custom
thesauri, building customized databases, and
organizing and publishing research results.

For more information about the NASA
STI program, see the following:

Access the NASA STI program home page at
http://www.sti.nasa.gov.

		 E-mail your question via the Internet to 	
		 help@sti.nasa.gov.

		 Fax your question to the NASA STI Help
		 Desk at (301) 621-0134.

		 Phone the NASA STI Help Desk at
		 (301) 621-0390.

			 Write to:
			 NASA STI Help Desk
			 NASA Center for AeroSpace Information
			 7121 Standard Drive
			 Hanover, MD 21076-1320

•

•

•

•

•

•

•

NASA/TP-2007-214608

Incorporation of Half-Cycle Theory Into Ko
Aging Theory for Aerostructural Flight-Life
Predictions

William L. Ko, Van T. Tran, and Tony Chen
NASA Dryden Flight Research Center
Edwards, California

January 2007

National Aeronautics and
Space Administration

Dryden Flight Research Center
Edwards, California 93523-0273

NOTICE
Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such
products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration.

Available from:

NASA Center for AeroSpace Information
7115 Standard Drive

Hanover, MD 21076-1320
(301) 621-0390

Cover art: NASA Dryden Flight Research Center, photograph EC04-0029-17.

iii

Contents

ABSTRACT. . 1

NOMENCLATURE. . 1

INTRODUCTION . . 4

THE B-52B AIRPLANE CARRYING the HYPER-X LAUNCH VEHICLE 5

THE KO CLOSED-FORM AGING THEORY . . 5
Failure-Critical Structural Components. . 5
Stress/Load Equation. . 6
Operational Load Factor . . 6
Crack Size Determinations. . 7
The Ko Operational Life Equation. . 8
The Ko Operational Life Theory Flow Chart . . 9

HALF-CYCLE CRACK GROWTH THEORY. . 10
The Walker Crack Growth Equation. . 10
The Half-Cycle Crack Growth Equation. . 11

CRACK GROWTH COMPUTER PROGRAM. . 12

OPERATIONAL LIFE ANALYSIS. . 14
The B-52B and Pegasus Pylon Hooks. . 14
Flight Load Spectra . . 15
Crack Growth Calculations . . 15
Number of Operational Flights . . 16

RESULTS. . 16
Crack Growth Curves. . 16

Air-Launching Flight . . 16
Captive Flight. . 17

Number of Operational Flights . . 18
Air-Launching Flight . . 18
Captive Flight. . 18

CONCLUSIONS. 20

APPENDIX A - OPERATIONAL LIFE EQUATIONS. . 22

APPENDIX B - CRACK GROWTH COMPUTER PROGRAM. . 24

APPENDIX C - MATERIAL PROPERTIES. . 63

iv

FIGURES. . 64

REFERENCES. . 81

ABSTRACT

The half-cycle crack growth theory was incorporated into the Ko closed-form aging theory
to improve accuracy in the predictions of operational flight life of failure-critical aerostructural
components. A new crack growth computer program was written for reading the maximum and
minimum loads of each half-cycle from the random loading spectra for crack growth calculations
and generation of in-flight crack growth curves. The unified theories were then applied to calculate
the number of flights (operational life) permitted for B-52B pylon hooks and Pegasus® adapter
pylon hooks to carry the Hyper-X launching vehicle that air launches the X-43 Hyper-X research
vehicle. A crack growth curve for each hook was generated for visual observation of the crack
growth behavior during the entire air-launching or captive flight. It was found that taxiing and the
takeoff run induced a major portion of the total crack growth per flight. The operational life theory
presented can be applied to estimate the service life of any failure-critical structural components.

NOMENCLATURE

A	 crack location parameter (A = 1.12 for a surface or edge crack)
a 	 depth (crack size) of semi-elliptic surface crack, in
ai−1 	 crack size at the end of the (i – 1)-th half cycle, in
ac

o 	 operational (final) crack size associated with operational

	 load V o
max , in, =









 =

Q K
AM f

a
f

IC

k

c
p

π σ*

2

2

ac
p 	 proof (initial) crack size associated with proof load V* , in, =











Q K
AM

IC

Kπ σ*

2

a1 	 crack size at the end of the first flight, in, = +a ac
p ∆ 1

C 	 coefficient of Walker crack growth equation, in
cycle

ksi in()−m

c	 half length of semi-elliptic surface crack, in
E(k)	 complete elliptic function of the second kind, = −∫ 1 sin2 2k dφ φ

π
0

2

F1
* 	 number of operational flights based on the first fight load data

f	 operational load factor associated with the worst half cycle of random load .
	 .
	 spectrum, = = =

V
V

a
a

o o
c
p

c
o

max
*

max
*

σ
σ

HXLV 	 Hyper-X launch vehicle
h	 thickness of hook, in
KIC 	 mode I critical stress intensity factor, ksi in

Kmax 	 mode I stress intensity factor associated with σmax , ksi in

∆K 	 mode I stress intensity amplitude associated with stress amplitude, (σ σmax min−), .
	 ksi in

�

()maxK i 	 mode I stress intensity factor associated with ()maxσ i of i-th half cycle, ksi in

∆Ki 	 mode I stress intensity amplitude associated [() ()max minσ σi i−] of i-th half cycle, .
	 ksi in

i	 1, 2, 3, …. , integer associated with the i-th half cycle
j	 1, 2, 3, …. , integer associated with the j-th half cycle, or the j-th flight

k	 modulus of elliptic function, = − 





1
2a

c

Mk 	 flaw magnification factor (Mk = 1 for a shallow crack)
m	 Walker stress intensity factor exponent associated with ()maxK m

N1	 number of stress cycles generated during the first flight
N	 partial stress cycles during flight (fraction of N1)
n	 Walker stress-ratio exponent associated with ()1− R n

Q	 surface flaw and plasticity factor, = −









[()]E k

Y

2
2

0 .212 σ
σ

*

R 	 stress ratio associated with constant amplitude load cycle, =
σ
σ

min

max

Ro	 stress (or load) ratio associated with the worst half-cycle, = =
σ
σ

min

max

min

max

o

o

o

o
V
V

Ri 	 stress ratio associated with the i-th half cycle, =
()
()

min

max

σ
σ

i

iSRB/DTV	 solid rocket booster drop test vehicle
VA 	 B-52B pylon front hook load, lb
VBL 	 B-52B pylon left rear hook load. lb
VBR 	 B-52B pylon right rear hook load, lb
VPFL 	 Pegasus pylon front left hook load, lb
VPFR 	 Pegasus pylon front right hook load, lb
VPRL 	 Pegasus pylon rear left hook load, lb
VPRR 	 Pegasus pylon rear right hook load, lb
VA	 B-52B pylon front hook
VBL	 B-52B pylon left rear hook
VBR	 B-52B pylon right rear hook
VPFL	 Pegasus pylon front left hook
VPFR	 Pegasus pylon front right hook
VPRL	 Pegasus pylon rear left hook
VPRR	 Pegasus pylon rear right hook

�

V 	 applied hook load, lb
V* 	 proof load for any hook, lb
V o

max 	 maximum load of the worst cycle of random load spectrum, lb
V o

min 	 minimum load of the worst cycle of random load spectrum, lb
∆a1 	 amount of crack growth induced at the end of the first flight, in
∆a 	 amount of a partial crack growth at any time step during the flight, in
δai 	 crack growth increment induced by the i-th half cycle, in
η 	 stress/load coefficient, ksi/lb
σ* 	 tangential stress at critical stress point induced by the proof load V* , ksi, = ηV*

σ A 	 tangential stress at critical stress point of B-52B pylon front hook induced by VA , .
	 ksi
σ BL 	 tangential stress at critical stress point of B-52B pylon rear left hook induced by .
	 VBL , ksi
σ BR 	 tangential stress at critical stress point of B-52B pylon rear right hook induced by .
	 VBR , ksi
σ PFL 	 tangential stress at critical stress point of Pegasus pylon front left hook induced by .
	 VPFL , ksi
σ PFR 	 tangential stress at critical stress point of Pegasus pylon front right hook induced .
	 by VPFR , ksi
σ PRL 	 tangential stress at critical stress point of Pegasus pylon rear left hook induced by .
	 VPRL , ksi
σ PRR 	 tangential stress at critical stress point of Pegasus pylon rear right hook induced by .
	 VPRR , ksi
σmax

o 	 tangential stress at critical stress point associated with operational peak load, .
	 V o

max , ksi
σU 	 ultimate tensile stress, ksi
σY 	 yield stress, ksi
σmax 	 maximum stress of constant amplitude loading cycles, ksi
σmin 	 minimum stress of constant amplitude loading cycles, ksi
σ t 	 tangential stress along hook inner boundary, ksi
()maxσ t 	 maximum value of σ t at the stress critical point, ksi
τU 	 ultimate shear stress, ksi
φ 	 angular coordinate for semi-elliptic surface crack, rad
θc 	 angular location of critical stress point, deg
()i 	 quantity associated with the i-th half cycle of random loading spectrum
()*	 quantity associated with proof load

�

INTRODUCTION

The NASA Dryden B-52B (McDonnell Douglas, St. Louis, Missouri) launch airplane has
been used to carry various types of flight research vehicles for high-altitude air-launching tests.
The test vehicle is mated to the B-52B pylon through one L-shaped front hook and two identical
L-shaped rear hooks. The L-shaped structural geometry will always induce tensile or compressive
stress concentration depending on the loading direction (B-52 hooks can have only tensile stress
concentrations). The inner curved boundary point of the hook where the tangential tensile stress
reaches a maximum is called a critical stress point of the hook and is the potential fatigue crack
initiation site.

During the early stages of the flight tests of the solid rocket booster drop test vehicle
(SRB/DTV, 49,000 lb) (1983), the two old rear hooks (fabricated with 4340 steel) failed almost
simultaneously during towing of the B-52B airplane carrying the SRB/DTV on a relatively smooth
taxiway (low-amplitude dynamic loading). A microsurface crack at the critical stress point of each
hook escaped detection because of surface masking by plating films. Those fatigue cracks could
have been initiated from the past long period of flight test load cycling and the surface corrosion. If
the hook failures had occurred during a takeoff run or during captive flight, a catastrophic accident
might have occurred. This type of potential accident underscored the need for reliable and accurate
calculations of the fatigue crack growths, which could thereby estimate the safe operational flight
life of the hooks for each new flight test program.

Recently, the B-52B airplane has been used to carry the Hyper-X launching vehicle that air-
launches the X-43 hypersonic flight research vehicle for Mach 7–10 flight tests. The B-52B pylon
hooks were intended to carry the total store weight of 40,000 lb (slightly lighter than the SRB/DTV
weight 49,000 lb).

The safety of flight tests using B-52B pylon hooks to carry any drop-test vehicle [for example,
the Hyper-X launching vehicle (HXLV)] hinges upon the structural integrity of the failure-critical
structural components like B-52B pylon hooks and Pegasus® (Orbital Sciences Corporation,
Dulles, Virginia) pylon hooks. It is, therefore, of vital importance to accurately determine the safe
operational flight life for each of those failure-critical aerostructural components.

Earlier, Ko (refs. 1–6) developed several aging theories for predicting the operational flight life
of airborne failure-critical structural components. The most accurate aging theory developed to date
was the Ko closed-form aging theory (refs. 5, 6). In this report, the half-cycle crack growth theory
will be incorporated into the Ko closed-form aging theory (refs. 5, 6) to improve the accuracy of
operational life predictions of failure-critical airborne structural components. A special half-cycle
crack growth computer program was written to calculate the crack growth needed for operational
life predictions. The enhanced Ko closed-form aging theory was then applied to calculate the
number of safe flights permitted for B-52B pylon hooks and Pegasus adapter pylon hooks to carry
the HXLV for air-launching the X-43 hypersonic flight research vehicle.

The operational life theory presented in this report can also be applied to estimate the service
life of any failure-critical structural components.

�

THE B-52B AIRPLANE CARRYING the HYPER-X LAUNCH VEHICLE

Figure 1 shows the B-52B aircraft carrying the HXLV with the X-43 hypersonic flight
research vehicle mated to its nose for air-launching flight tests at Mach 7–10. Because the Pegasus
booster rocket has a delta wing which prevents the cylindrical booster body to nest closely under
the B‑52B pylon concave belly, a special adapter called the Pegasus adapter pylon (weighing 2,300
lb) is used to link the B-52B pylon hooks to the HXLV (weighing 37,700 lb). The Hyper-X launch
vehicle is carried by the four identical Pegasus adapter pylon hooks, and the Pegasus adapter pylon
is, in turn, carried by the B-52B pylon hooks using a double-shear pin to link to the front hook and
through the Pegasus pylon adapter-shackles to connect to the two rear hooks of the B-52B pylon.
The total weight then carried by the B-52B pylon hooks is 40,000 lb.

The double-shear pin is not fatigue-critical because there is no stress concentration problem.
The two Pegasus pylon adapter shackles, however, are highly failure-critical because each shackle
contains a rectangular hole with four, sharp, rounded corners in the upper part, and a circular hole
in the lower part (ref. 8). Other failure-critical structural components identified are: the L-shaped
B-52B front and two rear hooks and the four, identical L-shaped, Pegasus adapter pylon hooks
(ref. 8).

The operational flight-life of all the pylon hooks will be analyzed because the actual loading
spectra for those components are now available for the application of the half-cycle crack growth
theory. The un-instrumented Pegasus adapter shackles were not analyzed because the actual loading
spectra do not exist.

THE KO CLOSED-FORM AGING THEORY

The following section will describe the Ko closed-form aging theory. In the formulation of
the Ko closed-form aging theory for aerostructural operational life predictions, the following steps
are used.

Failure-Critical Structural Components

A complex structure usually contains a certain number of failure-critical structural components,
each of which contains a critical stress point. The critical stress point is a boundary point of the
structural component where the tangential tensile stress concentration reaches a maximum, and
is the potential fatigue crack initiation site. The operational life of the complex structure is then
determined by the operational life of the worst failure-critical structural component having the
shortest fatigue life (that is, the fastest crack growth rate at the critical stress point). Therefore, in
the operational life analysis, the failure-critical structural components must be identified and their
stress fields established.

�

Stress/Load Equation

In the actual flight tests, the strain gages are usually installed in the vicinity of the critical
stress point, and are calibrated to record the applied load (such as hook load). After the failure-
critical structural components are identified, stress analysis must be performed for each critical
structural component to establish the functional relationship between the applied load and the
induced tangential stress at the critical stress point (refs. 7–9). For example, if V* is the proof
load, and if σ∗ is the induced proof stress at the stress critical point, then the proof stress, σ∗ ,
may be related to the proof load, V* , through the following stress/load functional relationship in
equation (1)

σ η* *= V (1)

where η is defined as the stress/load coefficient, and is determined from the finite-element stress
analysis of the critical structural component (refs. 7–9).

Operational Load Factor

The next information needed in the operational life analysis is the operational load factor, f
(<1), defined in equation (2) as

f
V
V

o o
= = <

σ
σ
max

*
max

* 1 (2)

where σmax
o is the operational maximum stress at the critical stress point induced by the operational

maximum load, V o
max , of the worst half-cycle of the random loading spectrum. The worst half-

cycle is defined as the half-cycle with the maximum stress (load) amplitude, associated with the
minimum stress ratio or load ratio as shown in equation (3)

() ()σ σ σmax min max
o o o o oR R− = − = =1 Maximum...;... σσ

σ
min

max

min

max

o

o

o

o
V
V

= = .Minimum (3)

where Ro is the stress (or load) ratio associated with the worst half-cycle. The worst half-cycle is to
be searched out in light of condition (3) by means of a special load-factor-searching computer code
embedded in the newly written crack growth computer program discussed in Appendix B. Keep
in mind that the value of V o

max may not necessarily be the peak load of the entire flight-loading
spectrum. Past flight load data showed that the operational maximum load, V o

max , usually occurred
during the takeoff run because the ground effect induced the maximum crack growth rate.

�

Crack Size Determinations

In developing the Ko aging theory (refs. 5, 6), the proof (initial) and operational (final)
crack sizes { a ac

p
c
o,	 } at the critical stress point of the failure-critical structural component must

be established first. The two crack sizes { a ac
p

c
o,	 } are associated respectively with the proof and

operational stresses {σ σ* ,	 max
o } [or proof and operational peak loads {V V o* ,	 max }], and are to be

calculated from crack tip equations (4) and (5) based on the fracture mechanics (refs 1–4).

a
Q K

AM
Q K

AM V
c
p

k k

IC IC=








 =









π σ π η* *

2 2

(4)

a
Q K

AM
Q K

AM f V
c
o

k
o

k

IC IC=








 =









π σ π ηmax

*

2 22

2=
a
f
c
p

(5)

In equations (4) and (5), KIC is the mode I critical stress intensity factor (material dependent),
A is the crack location parameter (for a surface crack, A = 1.12, refs. 1–4), Mk is the flaw
magnification factor (for a shallow surface crack, Mk = 1, refs. 1–4), and finally, Q is the surface
flaw shape and plasticity factor. For an elliptic surface crack (surface length 2c, depth a), Q may
be expressed as in equation (6) (refs. 1–4):

Q E k
Y

= −








[]() .

*
2

2

0 212 σ
σ

(6)

In equation (6), σY is the yield stress, and E(k) is the complete elliptic function of the second
kind defined in equation (7)

E k k d() = −∫ 1 sin2 2φ φ
π

	
0

2
(7)

where φ is the angular coordinate for a semi-elliptic surface crack, seen in fig. 2 (refs. 1–4), and k
is the modulus of the elliptic function defined in equation (8)

k
a
c

= − 





1
2

(8)

Table 1 lists the input data for finding the values of E(k) from the complete elliptic integral
table (ref. 10) for different crack aspect ratios a/2c. The values of Q were then calculated from
equation (6). Table 1 lists only typical values of Q calculated for the worst stress ratio σ σ*

Y = 1 .

�

Table 1. Key data for the calculations of Q, equation (6); σ σ*
Y = 1 .

a c2 a c k a c= − ()1 2 sin−1 k, deg. E(k)* Q

0.1 0.2 0.979796 78.463041 1.0506 0.8918
0.2 0.4 0.916515 66.421822 1.1584 1.1299
0.25 0.5 0.866025 60.0 1.2111 1.2548
0.3 0.6 0.8 53.130102 1.2764 1.4172
0.4 0.8 0.6 36.869898 1.4181 1.7990
0.5 1.0 0.0 0.0 π / 2 2.2554

* Obtained from the complete elliptic integral table (ref. 10).

Figure 2 shows the value of Q plotted as a function of crack aspect ratio a c2 with stress ratio
σ σ*

Y as a parameter. Remember that the values { a c2 = 0.25, a c2 = 0.5} listed in table 1 are
respectively the aspect ratios of the actual initial surface cracks of the failed B-52B pylon old rear
left and right hooks (ref. 7).

The Ko Operational Life Equation

This section describes the basics of the Ko closed-form operational life equations (refs. 5, 6).
In the formulation of Ko operational life equations, it was assumed that all the flights last for the
same duration of time and induce identical random loading spectra. By representing the random
loading spectra with the equivalent-constant-amplitude loading spectra so that the Walker crack
growth equation (refs. 3, 4) may be applied, Ko (refs. 5, 6) formulated the closed-form operational
life equation (as seen in equation (9) and derived in Appendix A) for the calculations of the number
of flights, F1

* , permitted for each failure-critical aerostructural component.

F
a a

a a

c
p

m

c
o

m

c
p

m m1

1
2

1
2

1
2 1

1
2

1* =
−

−

=
− −

− −

() ()

() ()

−−

− +










= +
−

−

f

a
a

a a
m

c
p

m c
p

2

1
1

2

1

1 1 ∆

∆....;.... aa1 (9)

In equation (9), a a ac
p

1 1()= + ∆ is the crack size at the end of the first flight, and ∆a1 is the
amount of crack growth induced by the first flight. 	

In equation (9), the known quantities are: the Walker stress-intensity-factor exponent m (refs.
3, 4), the load factor f [determined from equation (2)], and the proof (initial) and operational (final)
crack sizes { a ac

p
c
o,	 } [calculated respectively from equations {(4), (5)}]. The only unknown is the

crack growth, ∆a1 , induced by the first flight. Therefore, the accuracy of the predicted operational
flight life, F1

* , from equation (9) is hinged upon the method of calculations used in determining the

�

crack growth, ∆a1 . The step-by-step processes required to use the Ko operational life equation (9)
are shown in the following flow chart.

The Ko Operational Life Theory Flow Chart
Flow Chart for Using Ko Operational Life Theory

Identify failure-critical

structural components.

Perform finite-element stress analysis to

locate the stress critical point and establish

the stress/load function !
*
= "V

*
, for the

critical stress point.

Determine the operational load factor, f,

from the worst cycle of the flight loading

spectrum through a computer search.

Calculate the proof load (initial) crack size, ac
p

, and

the operational limit crack size, ac
o
=
ac
p

f
2

, at the

critical stress point using the fracture mechanics.

Calculate the amount of crack growth, !a ,

using the Half-Cycle Crack Growth computer

program.

Calculate the number of operational flights,

F1
*

, from the Ko operational life equation.

10

HALF-CYCLE CRACK GROWTH THEORY

In the calculations of fatigue crack growth under random loading, there are several existing
methods (ref. 11). For example,

Peak count method

Mean crossing peak count method

Range count method

Range-mean count method

Range pair count method

Level-crossing count method, and

Half-cycle method, etc. (ref. 11).

After reviewing the basics of those different theories, the half-cycle theory was chosen for the
present crack growth calculations. The reason being that the half-cycle theory accounts every half-
cycle of the random load spectrum without missing any secondary, small-amplitude half-cycles
which do not even cross over the mean stress line (ref. 2). The second reason is that the predictions
of fatigue life from the half-cycle theory compare fairly well with some existing experimental
fatigue data (ref.11, pg. 211, ref. 12).

The half-cycle theory assumes that the amount of crack growth induced by each half-cycle of
the random loading spectrum is considered as one-half of a complete cycle of a constant amplitude
load spectrum with the same load amplitude. Figure 3 shows the resolutions of the random stress
cycles into a series of half-cycles with different loading amplitudes (ref. 2). Under such assumption,
the Walker crack growth equation may be used to calculate the incremental crack growth induced
by each half-cycle with particular load amplitude.

The Walker Crack Growth Equation

The Walker crack-growth equation for the constant amplitude load spectrum is given in
equation (10) by

da
dN

C K R C K Rm n m n m= − = − −() () () ()max 1 1∆ (10)

where C, m, n are material constants. The mode I stress intensity factor, Kmax , mode I stress
intensity amplitude, ∆K , and the stress ratio, R are defined in equations (11), (12), and (13).

1)

2)

3)

4)

5)

6)

7)

11

K AM
a

Qkmax max= σ π
(11)

∆K AM
a

Qk= −()max minσ σ π
(12)

R =
σ
σ

min

max
(13)

where {σmax , σmin } are respectively the maximum and minimum stresses of the constant
amplitude load spectrum. Equation (10) will now be modified to describe the half-cycle crack
growth.

The Half-Cycle Crack Growth Equation

In applying the half-cycle theory to calculate the crack growth induced by the random loading
spectrum, it is assumed that the incremental amount of crack growth caused by each half-cycle
with a particular load amplitude may be considered as a half-cycle of the constant amplitude
loading spectrum with the same load amplitude. Therefore, the Walker crack growth equation,
(10), may be used to calculate the incremental crack growth induced by each half-cycle of different
load amplitude.

If the crack growth increment, da in equation (10), is set equal to the crack growth increment,
δai , induced by the i-th (i = 1, 2, 3, ….) half cycle (i.e., da = δai), and the corresponding number
of stress cycle increment, dN, is set equal to one half cycle (i.e., dN = 1/2), then the Walker crack-
growth equation (10) becomes the half-cycle crack growth equation for the calculations of half-
cycle crack growth increment, δai . This half-cycle crack growth is expressed in equation (14).

δa
C

K R
C

K Ri i
m

i
n

i
m

i
n m= [] − = − −

2
1

2
1() () () ()max ∆ (14)

where { ()maxK i , ∆Ki , Ri } are respectively the values of { Kmax , ∆K , R } [See equations (11)–
(13)} associated with the i-th half-cycle given by equations (15), (16), and (17).

() ()max maxK AM
a
Q

a a ai k i
i

c= = =−
−σ π 1

1 1 0....;.... pp i..when. =1 (15)

12

∆K AM
a
Qi k i i
i= −[] −() ()max minσ σ π 1 (16)

Ri
i

i
=

()
()

min

max

σ
σ (17)

where the subscript i (= 1, 2, 3, ….) is associated with the i-th half-cycle, and ai−1 is the
cumulated crack size up to the (i –1)-th half-cycle. When i = 1, the crack size ai−1 becomes
a a a ai c

p
− −= = =1 1 1 0 .

If N is any number of load cycles less than the total load cycles, N1 , induced by the first
flight, then the amount of the partial crack growth, ∆a , induced by the N load cycles may be
obtained from the crack growth equation (18) by summing up all the previous half-cycle crack
growth increments, δai , up to 2N (not N) cycles as

∆a a N Ni
i

N
= ≤()

=
∑δ

1

2

1....;.... (18)

The summation process of the half-cycle crack growth according to equation (18) is
graphically illustrated in fig. 4 (refs. 2–4). Equation (18) is used to calculate the increasing partial
crack growths, ∆a , with increasing numbers of cycles, N, (or flight time steps) for generating
the data set for plotting the crack growth curve (crack growth as a function of flight time) for the
critical structural component. When N reached the total number of cycles, N1 , (N N= 1), equation
(19) will give the total amount of crack growth, ∆a1 , induced by the first flight. Namely,

()∆ ∆a a aN N i
i

N

=
=

= = ∑1 1
1

2 1
δ (19)

The value of ∆a1 , calculated from equation (19) is to be used as input to equation (9) for the
calculation of the number of operational flights F1

* of the failure-critical structural component.

CRACK GROWTH COMPUTER PROGRAM

To carry out the summation of the half-cycle crack growth increment,δai , on the right-hand
side of equation (18) or (19), a special crack growth computer program was written. (see Appendix
B for details). To use this program and its results, it is necessary to perform the following steps.

Create a new data file containing only the required data from the time taxiing begins
to the time of test vehicle drop (or the time of complete stop after captive touchdown)

1)

13

because a flight-test load data file is normally very big covering the ground-sitting
portion. Keep in mind that the flight data is the load spectrum and not the stress cycles
at the critical stress point.

Use a spike remove program to remove noises (spikes) from a flight load spectrum
since spikes can add in erroneously big crack growth.

Run the crack growth program. This program prompts for an unc3 format input
filename. Then, it prompts for some important InterRange Instrumentation Group B
(IRIGB) times in milliseconds of start taxiing, takeoff run, cruise power, and drop (or
captive stop). After getting all required input data, the crack growth computer program
performs the following key functions.

Read the input flight load spectrum. For each channel (associated with each .
		 hook) in the input file, the program picks up the maximum and minimum .
		 loads for the i-th half-cycle, () ()max minV Vi i,	{ } . The half-cycle maximum .
		 load, ()maxV i , is determined when the load is bigger than the two adjacent .
		 loads; and conversely, the minimum load, ()minV i , of the same half-cycle .
		 is determined when load is smaller than the two adjacent loads.

The loads () ()max minV Vi i,	{ } and their corresponding IRIGB times are .
		 saved in asc2 format output files. The names for the asc2 files are simple. .
		 For channel vap, the filename is sigma_vap.asc2.

The loads () ()max minV Vi i,	{ } are then converted into the corresponding .
		 maximum and minimum stresses, {() () }max minσ σi i,	 , of the i-th half cycle .
		 using equation (1).

Calculate the half-cycle crack growth increment, δai , using equation (14), .
		 and summing up δai over different numbers of load cycles, N (or a time .
		 step), to generate a data set of different partial crack growths, ∆a , from .
		 equation (18).

Compute the total crack growth, ∆a1 , from equation (19) for the entire flight
		 (from the time of start taxiing to the time of drop or captive stop) for
		 approximately every minute. The times in minutes (zero at start taxiing

		 time) and its corresponding ∆a1 are saved in an unc3 output file.

Determine the worst half-cycle from the loading spectrum during
		 takeoff run and cruise power using the criterion of equation (3) and obtain

		 the operational maximum load, V o
max , of the worst half-cycle.

Compute the load factor, f, from equation (2).

Calculate the number of operational flights, F1
∗ from equation (9) based on

		 the first flight load data.

2)

3)

a .

b .

c .

d .

e.

f .

g.

h.

14

Generate a summary report in text format. This file contains the name of
		 each B-52B hook in the input file, its total crack growth for the first flight,

		 ∆a1 , its number of operational flights, F1
* , its operational load factor f,

		 its worst half cycle maximum load V o
max , its worst half-cycle minimum load,

		 V o
min , and the corresponding IRIGB time. It also has the values of the

		 numerator and the denominator that are used to calculate F1
* .

Print on screen the names of the crack growth output file and the
		 summary file.

Convert the crack growth file to asc2 format and then to Mircosoft (Redmond,
Washington) Excel format.

Graphically plot ∆a as a function of flight time in minutes using Excel.

OPERATIONAL LIFE ANALYSIS

The Ko aging theory with the half-cycle crack growth theory incorporated, will now be
applied to calculate the operational life spans of the three B-52B pylon hooks, and the four Pegasus
adapter pylon hooks carrying the HXLV.

Two types of flights were analyzed: 1) air-launching flight, 2) captive flight. The air-launching
flight lasted for 106 minutes, counted from the time of B-52B break release for taxiing until the
time of air launching (dropping of the HXLV). The captive flight (no air-launching of the HXLV)
lasted for 191 minutes, counted from the time of B-52B break release for taxiing and takeoff until
the time of complete stop after captive landing.

The purpose of the analysis is to compare the crack growths, ∆a1 , induced by the first air-
launching and first captive flight, and find out how many air-launching flights will be consumed by
each captive flight. The actual flight loading data were used for the operational life calculations.

The B-52B and Pegasus Pylon Hooks

Figures 5–10, taken from reference 8, respectively show the geometry of B-52B pylon
hooks (figs. 5, 7), and a typical Pegasus adapter pylon hook (fig. 9). The tangential tensile stress
distribution over the inner boundary of each hook, obtained from finite-element stress analysis
(figs. 6, 8, 10), is also shown, together with the locations of the critical stress points and the stress/
load relationships indicated. The stress/load coefficients, η , for B-52B pylon hooks and Pegasus
adapter pylon hooks established from the finite-element stress analysis are summarized in table 2
(taken from ref. 8).

i.

j.

4)

5)

15

Table 2. Proof loads, V* , and stress/load coefficients, η ,
for B-52B pylon hooks and Pegasus adapter pylon hooks.

Hooks V*, lb η,.ksi/lb

VA 36,500 7.3522×10-3

VBL 57,819 5.8442×10-3

VBR 57,819 5.8442×10-3

VPFL 75,000 2.4459×10-3

VPFR 75,000 2.4459×10-3

VPRL 75,000 2.4459×10-3

VPRR 75,000 2.4459×10-3

The stress/load coefficients, η , listed in table 2 are to be input to the crack-growth computer
program to convert the loading spectrum of each hook into the stress cycles associated with the
critical stress point using equation (1).

Flight Load Spectra

Figures 11–17 respectively show the flight load spectra of the B-52B pylon hooks and the
Pegasus adapter pylon hooks carrying the HXLV during the takeoff run of the first air-launching
flight. The location of the worst half-cycle and the value of the load factor, f, are indicated in
each figure. The worst half-cycle was located by means of the crack growth computer program
searching over the takeoff run portion of each flight load spectrum, and then finding the value of
the operational maximum load, V o

max (=σ ηmax
o /), of the worst half-cycle with minimum load

ratio or stress ratio, Ro expressed in equation (20),

R
V
V

V
V

o
o

o

o

o

o

o= = =
σ
σ

η
η

min

max

min

max

min

max
=..miniimum (20)

The value of V o
max (or σmax

o) was then used to calculate the load factor, f, for each hook using
equation (2).

Crack Growth Calculations

The material properties of B-52B pylon hooks and Pegasus adapter pylon hooks listed in
Appendix C were used for the crack growth calculations. In the present crack growth calculations,
the surface crack (A = 1.12) at the critical stress point of each hook was assumed to be a very
shallow (Mk =1) semi-elliptic surface crack. Only one aspect ratio, a/2c = 1/4 (Q = 1.2548, table

16

1) was considered. As mentioned earlier, the value a/2c = 1/4 is the aspect ratio of the microsurface
crack which caused the failure of a B-52B pylon old rear left hook (ref. 7). The crack-growth
computer program was then used to read the values of {() () }max minV Vi i,	 for each half-cycle over
the loading spectrum, and converted them into the corresponding stresses {() () }max minσ σi i,	
through equation (1) using the η values given in table 2 to calculate the half-cycle crack growth
increment, δai , using equation (14). Finally, δai are summed up to different desired cycles (or
time steps) to obtain partial crack growth, ∆a , using equation (18) for generating a data set for
plotting the crack growth curve for each hook. This process is graphically illustrated in fig. 3 .
and 4.

Number of Operational Flights

After the total crack growth, ∆a1 , induced by the first flight is calculated from equation (19)
with the aid of the crack-growth computer program, the operational life equation (9) was then used
to calculate the safe number of operational flights, F1

* , allowed for the B-52B pylon hooks and
Pegasus adapter pylon hooks to carry the HXLV for air-launching and captive flights.

RESULTS

The following sections discuss the results of the operational life analysis of the B-52B pylon
hooks and the Pegasus adapter pylon hooks carrying the HXLV. This analysis uses the Ko aging
theory and is aided by the half-cycle crack growth calculation method.

Crack Growth Curves

The crack growth curve is a very powerful tool for visually observing the crack growth
behavior at the critical stress point of each failure-critical component. The crack growth curve for
each hook was generated for the following two types of flights: air-launching flight and captive
flight.

Air-Launching Flight

Figures 18–20 respectively show the crack growth curves generated for the three B-52B
pylon hooks. Those crack growth curves were calculated from equation (18) with the crack growth
summation carried out by the crack-growth computer program using the first air-launching flight
data. Notice that the crack growth rate for each hook is quite rapid during taxiing because of ground
effect, and became more accelerated (illustrated by a steeper slope on the graph) during the takeoff
run as the ground-induced vibrations intensified. Once airborne, the ground effect diminished and,
therefore, the crack growth rate slowed down considerably and stayed relatively constant (except
for encountering wind gusts) until air-launching. The crack growth curve for the B-52B front hook
(VA, fig. 18) exhibits the steepest takeoff-run slope as compared with the B-52B two rear hooks
(VBL and VBR, figs. 19, 20). The rapid crack growth of the B-52B front hook during the takeoff
run could be attributed in part to the overhanging effect of the X-43, which is at a forward distance
from the front hook. For the three B-52B pylon hooks, (VA, VBL, VBR), taxiing and takeoff runs

17

combined induced approximately 65, 51, and 41 percent of the respective total crack growth, .
∆a1 ,per flight.

Figures 21–24 respectively show the crack growth curves for the four Pegasus adapter pylon
hooks (VPFL, VPFR, VPRL, and VPRR). Those crack growth curves were generated from the
crack growth computer program in carrying out the summation in equation (18) using the first
air-launching-flight load data. The crack growth behavior of the Pegasus adapter pylon hooks is
similar to that of the B-52B hooks, but with lower crack growth rates, especially during cruise
flight. For the four Pegasus adapter pylon hooks (VPFL, VPFR, VPRL, and VPRR), the taxiing
and takeoff run combined induced approximately 45, 60, 64, and 41 precent of the respective total
crack growth, ∆a1 , per flight.

Captive Flight

Figures 25–27 respectively show the crack growth curves generated for the three B-52B pylon
hooks (VA, VBL, and VBR) using the first captive-flight data. These crack growth curves were
calculated from equation (18) with the crack growth summation carried out by the crack-growth
computer program. Notice that, for each B-52B pylon hook, the amounts of crack growth and the
crack growth rates (shown by slopes on the graphs) during the takeoff phase and the landing phase
are quite similar. During the smooth cruise phase, the B-52B airplane encountered only two minor
wind gusts (gust 1 and gust 2). The cruising crack growth rate of the front hook (VA, fig. 25) is
much slower than those of the two rear hooks (VBL and VBR, figs. 26, 27). At the end of the cruise,
three gusts were encountered by the B-52B airplane. The most severe, gust 5 coinciding with the
B-52B maneuver, caused the crack growth rate for each hook to increase rapidly (portrayed by
steeper slopes). For these three hooks, the fastest crack growth rates occurred during both the
takeoff phase and landing phase because of severe ground effects. For the three B-52 hooks (VA,
VBL, VBR), the takeoff phase and the landing phase combined contributed approximately 67, 54,
and 51 percent of the respective total crack growth, ∆a1 , per flight. The crack growth rate of the
outboard right rear hook (VBR) during cruising flight is slightly faster than that of the inboard left
rear hook (VBL). This phenomenon was also observed in the air-launching flight-test case (figs.
19, 20).

Figures 28–31 respectively show the crack growth curves generated for the Pegasus adapter
pylon hooks (VPFL, VPFR, VPRL, and VPRR) by the crack growth computer program. The
program carried out the summation of half-cycle crack growths, calculated by equation (18),
associated with the first captive-flight load spectra. The crack growth curves of the Pegasus adapter
pylon hooks are similar to those of the B-52B hooks, but with lower crack growth rates, especially
during cruise flight. For the four Pegasus adapter pylon hooks (VPFL, VPFR, VPRL, and VPRR),
the takeoff phase and landing phase combined induced nearly 51, 59, 71, and 51 percent of the
respective total crack growth, ∆a1 , per flight.

18

Number of Operational Flights

The number of possible operational flights for each of the B-52B pylon hooks and of Pegasus
adapter pylon hooks (carrying the HXLV) were calculated from the operational life equation, (9).
Flight test data was obtained from two types of test flights, air-launching and captive.

Air-Launching Flight

For the air-launching flight, which lasted for 106 minutes, the key input and output data
generated for different hooks are listed in table 3 for crack geometry a c/ 2 = 0.25 (Q = 1.2548).

Table 3. Key data for the B-52B airplane carrying the Hyper-X launch vehicle.
(total weight: 40,000 lb); 106-min air-launching flight; a c/ 2 = 0.25 (Q = 1.2548).

Hooks V*, lb V o
max , lb f ac

p , in ∆a1, in F1
*, flights

VA 36,500 18,065 0.4949 0.0691 1.9258×10-4 304
VBL 57,819 23,227 0.4017 0.0429 2.5367×10-4 186†

VBR 57,819 18,906 0.3270 0.0429 2.5734×10-4 203

VPFL 75,000 34,367 0.4582 0.1455 1.6680×10-4 873
VPFR 75,000 34,623 0.4616 0.1455 1.8326×10-4 790
VPRL 75,000 21,179 0.2824 0.1455 1.4053×10-4 1,323††

VPRR 75,000 21,413 0.2855 0.1455 1.5441×10-4 1,200
† Shortest operational life, †† Longest operational life

Table 3 shows that, among the three B-52B pylon hooks, the rear left hook (VBL) has the
shortest life (186 flights), and the front hook (VA) has the longest life (304 flights). Although the
crack growths for VBL and VBR are quite close, the higher value of f for VBL (f = 0.4017) caused
the operational life of VBL to be shorter than VBR (f = 0.3270).

Among the four Pegasus pylon adapter hooks, the front right hook (VPFR) has the shortest
life (790 flights), and the rear left hook (VPRL) has the longest life (1323 flights).

Captive Flight

For the captive flight which had a duration of 191 minutes, the resulting key input and output
data for different hooks are listed in table 4 for a c/ 2 = 0.25 (Q = 1.2548).

19

Table 4. Key data for the B-52B airplane carrying the Hyper-X launch vehicle.
(total weight: 40,000 lb); 191-min captive flight; a c/ 2 = 0.25 (Q = 1.2548).

Hooks V*, lb V o
max , lb f ac

p , in ∆a1, in F1
*, flights

VA 36,500 17,171 0.4704 0.0691 6.7226×10-4 91
VBL 57,819 21,616 0.3739 0.0429 7.4446×10-4 83†

VBR 57,819 17,875 0.3092 0.0429 5.8556×10-4 92

VPFL 75,000 33,482 0.4464 0.1455 2.1151×10-4 477
VPFR 75,000 34,137 0.4552 0.1455 3.3859×10-4 433
VPRL 75,000 22,565 0.3009 0.1455 3.1070×10-4 586††

VPRR 75,000 21,087 0.2812 0.1455 3.3090×10-4 563
† Shortest operational life, †† Longest operational life

Table 4 shows that, like the air-launching flight, the life of the B-52B pylon rear left hook
(VBL) at 83 flights is shorter than the identical rear right hook (VBR) at 92 flights because of
higher values of { ∆a1 , f}. Among the four identical Pegasus pylon hooks, the front right hook has
the shortest life (433 flights), and the rear left hook (VPRL) has the longest life (586 flights). Also,
note from table 4 that crack growths, ∆a1 , induced by the captive flight are approximately 2–3
times larger than ∆a1 induced by the air-launching flight, therefore, the flight life of each hook is
reduced.

Table 5 compares the operational flight life of each hook undergoing air-launching flight

and captive flight. The ratio
()

()

*

*
F

F
1

1

Air launching

Captive

− will then give the number of air-launching flights

consumed by each captive flight.

20

Table 5. Summary of available number of flights: B-52B carrying Hyper-X launch
vehicle (total weight: 40,000 lb); 106-min air-launching flight; 191 min captive flight.

Hook

F1
*, flights Number of air-launching flights

consumed by each captive flight

Air-launching
(A)

Captive
(C)

(A)
(C)

VA 304 91 3.34 (≈ 3)
VBL 186† 83† 2.24 (≈ 2)
VBR 203 92 2.21 (≈ 2)

VPFL 873 477 1.83 (≈ 2)
VPFR 790 433 1.82 (≈ 2)
VPRL 1,323†† 586†† 2.26 (≈ 2)
VPRR 1,200 563 2.13 (≈ 2)

† Shortest operational life, †† Longest operational life

Note from table 5 that each captive flight consumed 2–3 air-launching flights (depending on
the type of hooks) because it had a longer flight duration, encountered more air gusts, experienced
aircraft maneuvers, and had a landing phase.

CONCLUSIONS

The half-cycle crack growth theory was incorporated into the Ko closed-form aging theory
for accurate crack growth calculations, which would thereby improve the accuracy of predictions
of operational life of failure-critical aerostructural components. The unified theories were then
used to calculate the number of operational flights permitted for B-52B pylon hooks and Pegasus
adapter pylon hooks carrying the HXLV. The highlights of the operational life analysis are:

A new crack growth computer program was written to remove the noises, to read the
maximum and minimum loads of each half-cycle of the random-flight loading spectra,
and then to calculate the crack growths based on the half-cycle crack growth theory.

The crack growths calculated from the half-cycle crack growth program should be
quite accurate because every half-cycle of each random loading spectrum was counted,
including those secondary mini-amplitude half-cycles which did not even cross over
the mean stress lines.

The crack growth curve generated for each hook using the newly written crack growth
computer program is a powerful practical tool for visualization of crack growth behavior
at the critical point of each hook during all phases of flight.

The crack growth rates are most rapid during the takeoff phase (brake release for taxiing

1)

2)

3)

4)

21

and takeoff run) and landing phase (touchdown and taxiing to stop) because of ground
effect, and induced a large percentage of the total crack growth per flight.

Once airborne and during cruise, the crack growth rate decreased significantly, and
stayed almost constant, except for encountering wind gusts and aircraft maneuvers.

For air-launching flight (the B-52B airplane carrying and launching the HXLV), taxiing
and takeoff combined induced approximately 41–65 precent of the total crack growth
per flight depending on the types of hooks. The B-52B pylon rear left hook (VBL) has
the shortest operational life of 186 flights, and the Pegasus pylon adapter rear left hook
(VPRL) has the longest operational life of 1323 flights.

For captive flight (the B-52B airplane carrying the HXLV), the takeoff phase and the
landing phase combined induced approximately 51–71 percent of the total crack growth
per flight depending on the types of hooks. The B-52B pylon rear left hook (VBL) has
the shortest operational life of 83 flights, and the Pegasus pylon adapter rear left hook
(VPRL) has the longest operational life of 586 flights.

Each captive flight is equivalent to 2–3 air-launching flights (depending on the type of
hooks) because of longer flight time, encountering more wind gusts, intended aircraft
maneuvers, and an additional captive landing phase.

Dryden Flight Research Center
National Aeronautics and Space Administration
Edwards, California, October 12, 2006

5)

6)

7)

8)

22

APPENDIX A
OPERATIONAL LIFE EQUATIONS

The original Ko closed-form operational life equation (refs. 5, 6) has the mathematical form
given by equation (A1)

F
a a

a a

c
p

m

c
o

m

c
p

m m1

1
2

1
2

1
2 1

1
2

1
* =

−

−

=
− −

− −

() ()

() ()

−−










−










−

−

a
a

a
a

c
o

c
p

m

c
p

m

1
2

1
1

2
1

(A1)

From equation (5), the crack-ratio/load-factor relationship is established as seen in .
equation (A2).

a
a f

c
o

c
p =

1
2 (A2)

As seen in equation (A3) the crack size at the end of the first flight, a1 , may be expressed in
terms of the crack growth, ∆a1 , for the first flight as

a a ac
p

1 1= + ∆ (A3)

In light of equations (A2) and (A3), equation (A1) may be written in more compact form in
terms of f in equation (A4)

F
f

a a
a

m

c
p

c
p

m1

2

1
2

1
1

2

1 1

1

1
* =

−







− +









=

−

−
∆

−−






− +










−

−

1

1 1

2

1
1

2

f

a
a

m

c
p

m
∆

(A4)

which may be rewritten in equation (A5) as

23

	 *F
f

a
a

m

c
p

m1
2

1
1

2

1

1 1

=
−

− +










−

−
∆ (A5)

which is equation (9), the Ko operational life equation, in the text.

24

APPENDIX B
CRACK GROWTH COMPUTER PROGRAM

Start crackGrowth

program

Enter IRIGB times of

start taxiing, takeoff, cruise,

and drop/stop

Create deltaa and summary

output filenames from

input filename

Initialize variables and

structures

Calculate constants

Yes

No

All IRIGB

times entered

correct?

Enter input filename

(unc3 format)

Input file

exists?

No

Yes

Print error message and exit

Print error message and exit

Calculate number of data

blocks in input file

APPENDIX B---CRACK GROWTH COMPUTER PROGRAM

25

Create asc2 files for each

channel in input file

Determine number of times

to read data from start

taxiing to drop/stop

Calculate the operational

load factor f and

the number of operational

flights F1
*

Is the number of

times to read data

reached?

For each channel in input file

1. Read data

2. Determine Vmax and Vmin and

write them to asc2 files

3. Calculate Δa and write data

to deltaa output file

NoYes

Close all files

Open & write data into text

summary file. Then close file

End crackGrowth

program

Skip all data before start

taxiing time

26

/***

* Tittle: crackGrowth.c -- Crack Growth Program *

* Written by: Van T. Tran *

* Organization: Aerostructures Branch, RS, NASA Dryden Flight Research Center *

* Date: August 3, 2004 *

* *

* Introduction: *

* This program is written in C programming language. It only works with flight test data *

* files that have unc3 format. First, it prompts for an input filename. Then, it prompts *

* for some important InterRange Instrumentation Group B (IRIGB) times in milliseconds. *

* These IRIG times consist of start taxiing, takeoff run, cruise power, and drop/stop. After *

* getting all entered inputs, it performs several tasks for each channel in the input file such *

* as calculating the accumulated crack growth size, the number of operational flights, *

* the operational load factor, creating output files, and generating a summary report. *

* When it finishes, it prints on the screen the unc3 format output filename and the text *

* summary filename. *

* *

* There are different data formats at Dryden Flight Research Center. The text formats *

* consist of asc1 (ASCII 1) and asc2 (ASCII 2). The binary formats include *

* unc2 (uncompressed 2), unc3 (uncompressed 3), cmp3 (compressed 3), and *

* cmp4 (compressed 4). To convert a file from one format to another format, use *

* getdata and/or getdata3 programs. *

* *

* Inputs: *

* An unc3 format input file contains loading spectra. *

* *

* Outputs: *

* 1. unc3 output filename = input filename_deltaa.unc3. This file contains IRIGB times *

* and the corresponding crack growths, Δa, for all channels in the input file. Δa is *

* calculated using the half-cycle crack growth theory. *

* *

* 2. txt output filename = input filename_summary.txt. This file contains the following *

* information for all channels in the input file: *

* *

* - Δa1, the final sum of crack growths *

* *

* - F
1

*
, the number of operational flights, calculated by using Ko operational *

* life equation. *

* *

* - f, the operational load factor. *

* *

* - the worst half-cycle 0

max
V , 0

min
V , and the corresponding IRIGB time. *

* *

* - the numerator and the denominator used in calculation of F
1

*
. *

* *

* 3. asc2 output filename = sigma_channel name.asc2. Each sigma file contains IRIGB *

27

* time, half-cycle
max
V and

min
V for each channel in the input file. *

* *

* Procedure to use crackGrowth program: *

* *

* 1. Use getdata3 to convert flight test data file to asc2 format. *

* 2. Use vi, xemacs or textedit editor to filter the data so that the input file contains only *

* data from start taxiing time to drop/stop time. *

* 3. Use getdata3 to convert the filtered data file to unc3 format input file. *

* 4. Use any spike remove program to remove spikes in the input file. *

* 5. Run crackGrowth program by type in crackGrowth at the command line. *

* 6. Enter all required data as prompted on screen. *

* 7. Program crackGrowth is done when complete message is displayed on screen. *

* 8. Use getdata3 program to convert output file xxxx_deltaa.unc3 to asc2 format. *

* 9. Convert asc2 format to excel format *

* 10. Use Excel to plot the data *

* 11. Use vi, xemacs or textedit editor to read xxxx_summary.txt file. *

* 12. Use vi, xemacs or textedit editor to read sigma_xxxx.asc2 files. *

* *

* Initial Release: November 2004 *

* *

**/

/* Header Files */

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <fcntl.h>

#include <unistd.h>

#include <sys/stat.h>

#include <sys/ddi.h>

#include <math.h>

/* Library subroutines */

double sqrt(double x);

double pow(double x, double y);

/* Define constants */

#define FALSE 0

#define TRUE 1

#define ERROR -1

#define NAMES_SIZE 16

#define TITLE_LENGTH 80

#define FNAME_LENGTH 200

28

#define NUM_BYTES 4

#define MAXCHANS 30

#define MAXBUFS 5000

#define MAXSIZE 512

#define NUM_SECONDS 60

#define NONE 0

#define MIN 1

#define MAX 2

#define EQUAL 3

#define A 1.12

#define Mk 1

#define Q 1.2548

#define PI 3.14159265359

#define Eta_FRONT_HOOK 0.0073522

#define Eta_REAR_HOOK 0.0058442

#define Eta_PEGASUS 0.0024459

#define Vstar_FRONT_HOOK 36500.0

#define Vstar_REAR_HOOK 57819.0

#define Vstar_PEGASUS 75000.0

#define Kic_FRONT_HOOK 125.0

#define Kic_REAR_HOOK 124.0

#define Kic_PEGASUS 124.0

#define C_FRONT_HOOK 0.00000000000922

#define C_REAR_HOOK 0.00000000002944

#define C_PEGASUS 0.00000000002944

#define m_FRONT_HOOK 3.6

#define m_REAR_HOOK 3.24

#define m_PEGASUS 3.24

#define n_FRONT_HOOK 2.16

#define n_REAR_HOOK 1.69

#define n_PEGASUS 1.69

#define f_VA 0.4656

#define f_VBL 0.3720

#define f_VBR 0.3328

#define f_VPFL 0.4585

#define f_VPFR 0.4747

#define f_VPRL 0.2607

29

#define f_VPRR 0.2966

/* Define structure */

struct buffer_struct

{

unsigned long irig_time; /* IRIG B time */

float euc_data[MAXCHANS]; /* EUC data */

};

/* getdata format record format */

struct

{

short size;

char text[8];

char type[8];

char ver[8];

}

format = {sizeof(format), "format ", "unc 3 ", ".1 "};

/* getdata nChans record format */

struct

{

short size;

char text[8];

short dummy;

short count;

}

nchans = {sizeof(nchans), "nChans ", 0, 0};

/* getdata timekey record format */

struct

{

short size;

char text[8];

short dummy;

short count;

}

timekey = {sizeof(timekey), "timekey ", 0, 1000};

/* getdata title record format */

struct

30

{

short size;

char text[8];

char titl[TITLE_LENGTH];

}

title = {sizeof(title), "title "};

/* getdata names record format */

struct

{

short size;

char text[8];

}

names = {0, "names "};

/* getdata endhead record format */

struct

{

short size;

char text[8];

}

endhead = {sizeof(endhead), "endHead "};

/* Define variables */

char input_file[FNAME_LENGTH];

char output_file1[FNAME_LENGTH];

char output_file2[FNAME_LENGTH];

char f_vap[FNAME_LENGTH];

char f_vas[FNAME_LENGTH];

char f_vbrp[FNAME_LENGTH];

char f_vbrs[FNAME_LENGTH];

char f_vblp[FNAME_LENGTH];

char f_vbls[FNAME_LENGTH];

char f_vprrp[FNAME_LENGTH];

char f_vprrs[FNAME_LENGTH];

char f_vprlp[FNAME_LENGTH];

char f_vprls[FNAME_LENGTH];

char f_vpfrp[FNAME_LENGTH];

char f_vpfrs[FNAME_LENGTH];

char f_vpflp[FNAME_LENGTH];

char f_vpfls[FNAME_LENGTH];

31

char sigma_txt[MAXCHANS][FNAME_LENGTH];

char chan_name[MAXCHANS][NAMES_SIZE];

char asc2_name[MAXCHANS][26];

FILE *fpin;

FILE *fpout1;

FILE *fpout2;

FILE *fp_sigma_txt[MAXCHANS];

struct buffer_struct data_buffer;

struct buffer_struct data_write1;

struct buffer_struct data_write2;

struct buffer_struct data_read[MAXBUFS];

double C_OVER_2[MAXCHANS];

double deltaa[MAXCHANS][MAXBUFS], sum_a[MAXCHANS],

sum_deltaa[MAXCHANS];

double apc[MAXCHANS], apc_FRONT_HOOK, apc_REAR_HOOK, apc_PEGASUS;

float buff_endfile[MAXSIZE];

float calc_euc[MAXBUFS], temp_euc[MAXBUFS];

float stress_coef[MAXCHANS], Kic[MAXCHANS], m[MAXCHANS], n[MAXCHANS];

float Vstar[MAXCHANS], prev_value[MAXCHANS], end_value[MAXCHANS];

float min_max_value[MAXCHANS][MAXBUFS], last_data[MAXCHANS];

float f[MAXCHANS], Vmax[MAXCHANS], Vmin[MAXCHANS], Ri_min[MAXCHANS];

float numerator[MAXCHANS], denominator[MAXCHANS];

int num_chans, names_size;

int buf_size, normal_buf;

int max_data_read, int_flight[MAXCHANS];

long unc3_endfile = -1;

short first_time, last_data_read;

short prev_type[MAXCHANS], end_type[MAXCHANS], first_type[MAXCHANS];

short do_calc[MAXCHANS], write_index[MAXCHANS];

short last_index[MAXCHANS];

short processed_done[MAXCHANS];

unsigned long fp, fp_eof, fp_skip, fp_read, data_buff_size, num_data_blocks;

unsigned long starting_time_entered, starting_time;

unsigned long drop_time_entered, drop_time, dt;

unsigned long takeoff_time_entered, takeoff_time;

unsigned long cruise_time_entered, cruise_time;

unsigned long time_deltaa;

unsigned long num_blocks, num_read;

32

unsigned long min_max_time[MAXCHANS][MAXBUFS], last_data_time[MAXBUFS],

Tmax[MAXCHANS];

/* Subroutines used by the main program */

void get_header_info();

void write_asc2_header();

void skip_data();

void read_data();

void determine_max_min();

void calculate_deltaa();

void calculate_flights();

void generate_summary();

main(argc, argv)

int argc;

char *argv[];

{

char name[NAMES_SIZE];

int i, j, k, l;

double A_sqre, Mk_sqre, Q_over_PI, Kic_sqre, load_sqre;

/* Screen display */

printf("\ncrackGrowth program written by : Van T. Tran");

printf("\nNASA/Dryden Flight Research Center, Code RS");

printf("\nInitial Release - November 2004\n\n");

/* Prompt user for the input filename */

printf("crackGrowth: Enter input file name ");

scanf("%s", input_file);

/* Check if input filename exists */

if ((fpin = fopen(input_file, "r")) == NULL)

{

printf("\nError in openning input file %s\n\n", input_file);

printf("\ncrackGrowth program terminated\n\n");

exit (1);

}

/* Need start taxiing time in miliseconds */

printf("\ncrackGrowth: Enter Irigb starting time in msec (integer) ");

33

scanf("%d", &starting_time_entered);

printf("Entered Irigb starting time is %d\n\n", starting_time_entered);

starting_time = starting_time_entered * 10;

/* Need takeoff run time in miliseconds */

printf("crackGrowth: Enter Irigb takeoff time in msec (integer) ");

scanf("%d", &takeoff_time_entered);

printf("Entered Irigb takeoff time is %d\n\n", takeoff_time_entered);

takeoff_time = takeoff_time_entered * 10;

/* Need cruise power time in miliseconds */

printf("crackGrowth: Enter Irigb cruise time in msec (integer) ");

scanf("%d", &cruise_time_entered);

printf("Entered Irigb cruise time is %d\n\n", cruise_time_entered);

cruise_time = cruise_time_entered * 10;

/* Need drop or stop time in miliseconds */

printf("crackGrowth: Enter Irigb drop or stop time in msec (integer) ");

scanf("%d", &drop_time_entered);

printf("Entered Irigb drop time is %d\n\n", drop_time_entered);

drop_time = drop_time_entered * 10;

printf("crackGrowth program is running ...Do not interrupt ...\n");

strcpy(output_file1, input_file);

strcpy(output_file2, input_file);

/* Check if the input file has the extension of .unc3 */

if (strstr(input_file, ".unc3") != NULL)

{

j = strlen(output_file1) - 5;

strcpy(&output_file1[j], "_deltaa.unc3");

strcpy(&output_file2[j], "_summary.txt");

}

else

{

strcat(output_file1, "_deltaa.unc3");

strcat(output_file2, "_summary.txt");

}

/* Write the output filename */

34

if ((fpout1 = fopen(output_file1, "w")) == NULL)

{

printf("\nError in creating output file %s!", output_file1);

printf("\ncrackGrowth program terminated\n\n");

exit (2);

}

if ((fpout2 = fopen(output_file2, "w")) == NULL)

{

printf("\nError in creating output file %s!", output_file2);

printf("\ncrackGrowth program terminated\n\n");

exit (2);

}

/* Initialize variables and structures */

bzero((char *) (&apc), sizeof(apc));

bzero((char *) (&data_read), sizeof(data_read));

bzero((char *) (&data_write1), sizeof(data_write1));

bzero((char *) (&data_write2), sizeof(data_write2));

bzero((char *) (&buff_endfile), sizeof(buff_endfile));

bzero((char *) (&write_index), sizeof(write_index));

bzero((char *) (&stress_coef), sizeof(stress_coef));

bzero((char *) (&deltaa), sizeof(deltaa));

bzero((char *) (&sum_a), sizeof(sum_a));

bzero((char *) (&sum_deltaa), sizeof(sum_deltaa));

bzero((char *) (&do_calc), sizeof(do_calc));

bzero((char *) (&chan_name), sizeof(chan_name));

bzero((char *) (&asc2_name), sizeof(asc2_name));

bzero((char *) (&prev_type), sizeof(prev_type));

bzero((char *) (&Vmax), sizeof(Vmax));

bzero((char *) (&Vmin), sizeof(Vmin));

bzero((char *) (&numerator), sizeof(denominator));

num_chans = 0;

num_blocks = 0;

num_read = 0;

first_time = TRUE;

last_data_read = FALSE;

A_sqre = (double) A*A;

Mk_sqre = (double) Mk*Mk;

Q_over_PI = (double) Q/PI;

Kic_sqre = (double) Kic_FRONT_HOOK*Kic_FRONT_HOOK;

load_sqre = (double) Eta_FRONT_HOOK*Eta_FRONT_HOOK*

35

Vstar_FRONT_HOOK*Vstar_FRONT_HOOK;

apc_FRONT_HOOK = Q_over_PI * Kic_sqre / (A_sqre * Mk_sqre * load_sqre);

Kic_sqre = (double) Kic_REAR_HOOK*Kic_REAR_HOOK;

load_sqre = (double) Eta_REAR_HOOK*Eta_REAR_HOOK*

Vstar_REAR_HOOK*Vstar_REAR_HOOK;

apc_REAR_HOOK = Q_over_PI * Kic_sqre / (A_sqre * Mk_sqre * load_sqre);

Kic_sqre = (double) Kic_PEGASUS*Kic_PEGASUS;

load_sqre = (double) Eta_PEGASUS*Eta_PEGASUS*

Vstar_PEGASUS*Vstar_PEGASUS;

apc_PEGASUS = Q_over_PI * Kic_sqre / (A_sqre * Mk_sqre * load_sqre);

/* Move the file position indicator to the end of input file */

fseek(fpin, 0, SEEK_END);

/* Get the pointer at the end of file */

fp_eof = ftell(fpin);

fp_eof -= NUM_BYTES;

/* Move the file position indicator to the beginning of input file */

fseek(fpin, 0, SEEK_SET);

fp = ftell(fpin);

/* Call get_header_info subroutine */

get_header_info();

/* Calculate the number of data blocks in the input file */

num_data_blocks = (fp_eof - fp) / data_buff_size;

/* Skip all data before start taxiing time */

skip_data();

/* Determine the number of times to read data */

max_data_read = (num_data_blocks / normal_buf) + 1;

/* Create an asc2 format file for each channel */

for (i = 0; i < num_chans; i++)

36

{

if (do_calc[i] == TRUE)

{

if ((fp_sigma_txt[i] = fopen(sigma_txt[i], "w")) == NULL)

{

printf("\nError in creating text file %s!", fp_sigma_txt[i]);

printf("\ncrackGrowth program terminated\n\n");

exit (2);

}

}

}

/* Create asc2 header for each channel */

write_asc2_header();

/* Read data, determine max & min, and calculate crack growth */

for (i = 0; i < max_data_read; i++)

{

if (last_data_read == FALSE)

{

read_data();

determine_max_min();

calculate_deltaa();

}

}

/* Write end of file to the output file */

fwrite(&unc3_endfile, sizeof(long), 1, fpout1);

fwrite(&buff_endfile, sizeof(float)*MAXSIZE, 1, fpout1);

/* Close all files */

fclose(fpout1);

fclose(fpin);

for (i = 0; i < num_chans; i++)

{

if (do_calc[i] == TRUE)

{

fclose(fp_sigma_txt[i]);

}

}

printf("\n");

37

/* Calculate the number of operational flights */

calculate_flights();

/* Generate a summary text file */

generate_summary();

/* Close the summary text file */

fclose(fpout2);

/* Print the end message */

printf("\ncrackGrowth program completed successfully!\n");

printf("Crack growths are in %s\n", output_file1);

printf("Summary is in %s\n\n\n", output_file2);

}

/***

* Subroutine get_header_info() *

* *

* Description: *

* This subroutine reads the header information in the unc3 input file and write the header *

* information to the unc3 output file. The unc3 output file contains calculated crack *

* growths and times in minutes for all channels. For each channel, all important constants *

* are calculated and an asc2 format output file is generated. The asc2 filename has *

* sigma_ following by the channel name and extension asc2. For channel vap, the asc2 *

* filename is sigma_vap.asc2. *

* *

**/

void get_header_info()

{

int i;

short str_loc;

/* Read and write header information */

fread(&format, sizeof(format), 1, fpin);

fwrite(&format, sizeof(format), 1, fpout1);

/* Read the number of input channels and figure out the data buffer size */

fread(&nchans, sizeof(nchans), 1, fpin);

fwrite(&nchans, sizeof(nchans), 1, fpout1);

38

num_chans = nchans.count;

data_buff_size = num_chans * sizeof(float) + NUM_BYTES;

fread(&timekey, sizeof(timekey), 1, fpin);

fwrite(&timekey, sizeof(timekey), 1, fpout1);

fread(&title, sizeof(title), 1, fpin);

fwrite(&title, sizeof(title), 1, fpout1);

names_size = num_chans * NAMES_SIZE + 10;

/* Read and write channel names */

fread(&names, names_size, 1, fpin);

fwrite(&names, names_size, 1, fpout1);

str_loc = sizeof(names.text);

/* Calculate and determine constants and create sigma filenames */

for (i = 0; i < num_chans; i++)

{

strncpy(chan_name[i], &names.text[str_loc], NAMES_SIZE);

str_loc += NAMES_SIZE;

if (strstr(chan_name[i], "vap") != NULL)

{

stress_coef[i] = Eta_FRONT_HOOK;

Vstar[i] = Vstar_FRONT_HOOK;

Kic[i] = Kic_FRONT_HOOK;

apc[i] = apc_FRONT_HOOK;

C_OVER_2[i] = C_FRONT_HOOK / 2.0;

m[i] = m_FRONT_HOOK;

n[i] = n_FRONT_HOOK;

f[i] = f_VA;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vap.asc2");

}

else if (strstr(chan_name[i], "vas") != NULL)

{

stress_coef[i] = Eta_FRONT_HOOK;

Vstar[i] = Vstar_FRONT_HOOK;

Kic[i] = Kic_FRONT_HOOK;

apc[i] = apc_FRONT_HOOK;

C_OVER_2[i] = C_FRONT_HOOK / 2.0;

m[i] = m_FRONT_HOOK;

39

n[i] = n_FRONT_HOOK;

f[i] = f_VA;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vas.asc2");

}

else if (strstr(chan_name[i], "vbrp") != NULL)

{

stress_coef[i] = Eta_REAR_HOOK;

Vstar[i] = Vstar_REAR_HOOK;

Kic[i] = Kic_REAR_HOOK;

apc[i] = apc_REAR_HOOK;

C_OVER_2[i] = C_REAR_HOOK / 2.0;

m[i] = m_REAR_HOOK;

n[i] = n_REAR_HOOK;

f[i] = f_VBR;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vbrp.asc2");

}

else if (strstr(chan_name[i], "vbrs") != NULL)

{

stress_coef[i] = Eta_REAR_HOOK;

Vstar[i] = Vstar_REAR_HOOK;

Kic[i] = Kic_REAR_HOOK;

apc[i] = apc_REAR_HOOK;

C_OVER_2[i] = C_REAR_HOOK / 2.0;

m[i] = m_REAR_HOOK;

n[i] = n_REAR_HOOK;

f[i] = f_VBR;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vbrs.asc2");

}

else if (strstr(chan_name[i], "vblp") != NULL)

{

stress_coef[i] = Eta_REAR_HOOK;

Vstar[i] = Vstar_REAR_HOOK;

Kic[i] = Kic_REAR_HOOK;

apc[i] = apc_REAR_HOOK;

C_OVER_2[i] = C_REAR_HOOK / 2.0;

m[i] = m_REAR_HOOK;

n[i] = n_REAR_HOOK;

f[i] = f_VBL;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

40

strcpy(sigma_txt[i], "sigma_vblp.asc2");

}

else if (strstr(chan_name[i], "vbls") != NULL)

{

stress_coef[i] = Eta_REAR_HOOK;

Vstar[i] = Vstar_REAR_HOOK;

Kic[i] = Kic_REAR_HOOK;

apc[i] = apc_REAR_HOOK;

C_OVER_2[i] = C_REAR_HOOK / 2.0;

m[i] = m_REAR_HOOK;

n[i] = n_REAR_HOOK;

f[i] = f_VBL;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vbls.asc2");

}

else if (strstr(chan_name[i], "vprrp") != NULL)

{

stress_coef[i] = Eta_PEGASUS;

Vstar[i] = Vstar_PEGASUS;

Kic[i] = Kic_PEGASUS;

apc[i] = apc_PEGASUS;

C_OVER_2[i] = C_PEGASUS / 2.0;

m[i] = m_PEGASUS;

n[i] = n_PEGASUS;

f[i] = f_VPRR;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vprrp.asc2");

}

else if (strstr(chan_name[i], "vprrs") != NULL)

{

stress_coef[i] = Eta_PEGASUS;

Vstar[i] = Vstar_PEGASUS;

Kic[i] = Kic_PEGASUS;

apc[i] = apc_PEGASUS;

C_OVER_2[i] = C_PEGASUS / 2.0;

m[i] = m_PEGASUS;

n[i] = n_PEGASUS;

f[i] = f_VPRR;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vprrs.asc2");

}

else if (strstr(chan_name[i], "vprlp") != NULL)

{

41

stress_coef[i] = Eta_PEGASUS;

Vstar[i] = Vstar_PEGASUS;

Kic[i] = Kic_PEGASUS;

apc[i] = apc_PEGASUS;

C_OVER_2[i] = C_PEGASUS / 2.0;

m[i] = m_PEGASUS;

n[i] = n_PEGASUS;

f[i] = f_VPRL;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vprlp.asc2");

}

else if (strstr(chan_name[i], "vprls") != NULL)

{

stress_coef[i] = Eta_PEGASUS;

Vstar[i] = Vstar_PEGASUS;

Kic[i] = Kic_PEGASUS;

apc[i] = apc_PEGASUS;

C_OVER_2[i] = C_PEGASUS / 2.0;

m[i] = m_PEGASUS;

n[i] = n_PEGASUS;

f[i] = f_VPRL;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vprls.asc2");

}

else if (strstr(chan_name[i], "vpfrp") != NULL)

{

stress_coef[i] = Eta_PEGASUS;

Vstar[i] = Vstar_PEGASUS;

Kic[i] = Kic_PEGASUS;

apc[i] = apc_PEGASUS;

C_OVER_2[i] = C_PEGASUS / 2.0;

m[i] = m_PEGASUS;

n[i] = n_PEGASUS;

f[i] = f_VPFR;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vpfrp.asc2");

}

else if (strstr(chan_name[i], "vpfrs") != NULL)

{

stress_coef[i] = Eta_PEGASUS;

Vstar[i] = Vstar_PEGASUS;

Kic[i] = Kic_PEGASUS;

apc[i] = apc_PEGASUS;

42

C_OVER_2[i] = C_PEGASUS / 2.0;

m[i] = m_PEGASUS;

n[i] = n_PEGASUS;

f[i] = f_VPFR;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vpfrs.asc2");

}

else if (strstr(chan_name[i], "vpflp") != NULL)

{

stress_coef[i] = Eta_PEGASUS;

Vstar[i] = Vstar_PEGASUS;

Kic[i] = Kic_PEGASUS;

apc[i] = apc_PEGASUS;

C_OVER_2[i] = C_PEGASUS / 2.0;

m[i] = m_PEGASUS;

n[i] = n_PEGASUS;

f[i] = f_VPFL;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vpflp.asc2");

}

else if (strstr(chan_name[i], "vpfls") != NULL)

{

stress_coef[i] = Eta_PEGASUS;

Vstar[i] = Vstar_PEGASUS;

Kic[i] = Kic_PEGASUS;

apc[i] = apc_PEGASUS;

C_OVER_2[i] = C_PEGASUS / 2.0;

m[i] = m_PEGASUS;

n[i] = n_PEGASUS;

f[i] = f_VPFL;

do_calc[i] = TRUE;

Ri_min[i] = 1000;

strcpy(sigma_txt[i], "sigma_vpfls.asc2");

}

else

{

do_calc[i] = FALSE;

}

}

/* Read the end header of the input file and write it to the output file */

fread(&endhead, sizeof(endhead), 1, fpin);

fwrite(&endhead, sizeof(endhead), 1, fpout1);

43

/* Get the current value of the file-position pointer */

fp = ftell(fpin);

}

/***

* Subroutine write_asc2_header() *

* *

* Description: *

* This subroutine writes the header information in the asc2 format output files. Each asc2 *

* file contains the IRIGB times, maximum loads (Vmax), and minimum loads (Vmin) for *

* each input channel in the input file. *

* *

**/

void write_asc2_header()

{

int i, j;

char temp_name[] = " ";

for (i = 0; i < num_chans; i++)

{

bzero((char *) (&temp_name), sizeof(temp_name));

if (do_calc[i] == TRUE)

{

strncpy(temp_name, chan_name[i], 13);

fprintf(fp_sigma_txt[i], "format asc 2 .1 \n");

fprintf(fp_sigma_txt[i], "nChans 1\n");

fprintf(fp_sigma_txt[i], "names ");

fprintf(fp_sigma_txt[i], "%13s", temp_name);

fprintf(fp_sigma_txt[i], "\n");

fprintf(fp_sigma_txt[i], "data001 \n");

}

}

}

/***

* Subroutine skip_data() *

* *

* Description: *

* This subroutine reads data blocks from the input file until the start taxiing time is reached. *

* It positions the file pointer to the start taxiing time. It also calculates the time interval *

* between two adjacent data points to figure out the number of data blocks in 1 minute. *

* *

44

**/

void skip_data()

{

int i, j, k, offset;

float delta_t, num_buf;

/* Check if the start taxiing time is reached */

for (i = 0; i < num_data_blocks; i++)

{

fread(&data_read[i], data_buff_size, 1, fpin);

if (data_read[i].irig_time >= starting_time)

{

/* Read irigb time and data */

data_write1.irig_time = data_read[i].irig_time;

fwrite(&data_write1, data_buff_size, 1, fpout1);

break;

}

}

/* Move the file pointer to the start taxiing time */

if (i == 0)

{

fread(&data_read[1], data_buff_size, 1, fpin);

offset = -2 * data_buff_size;

}

else

{

offset = -data_buff_size;

}

/* Calculate the time interval between 2 adjacent data points */

delta_t = (data_read[1].irig_time - data_read[0].irig_time) / 10000.0;

/* Calculate the number of data blocks containing in 1 minute (60 sec) */

num_buf = NUM_SECONDS / delta_t;

normal_buf = (int) num_buf;

/* Move the file position indicator to the start taxiing time */

fseek(fpin, offset, SEEK_CUR);

45

}

/***

* Subroutine read_data() *

* *

* Description: *

* This subroutine determines the number of data blocks to read into data_read buffers. *

* After each reading, it checks to see if the drop or stop time is reached. If yes, it sets the *

* last_data_read indicator to TRUE and determines the buffer size for the last data read. If *

* no, it sets the buffer size and move the file pointer to the right position for the next data *

* read. *

* *

**/

void read_data()

{

int i, count, offset;

num_read++;

num_blocks = 0;

bzero((char *) (&data_write1), sizeof(data_write1));

/* Determine the number of data blocks to read */

if (first_time == TRUE)

{

count = normal_buf + 2;

}

else

{

count = normal_buf + 1;

}

for (i = 0; i < count; i++)

{

/* Read data */

fread(&data_read[i], data_buff_size, 1, fpin);

num_blocks++;

/* Check if the drop or stop time is reached */

if (data_read[i].irig_time >= drop_time)

{

/* Indicate the last data read */

last_data_read = TRUE;

46

time_deltaa = data_read[i].irig_time;

data_write1.irig_time = data_read[i].irig_time;

buf_size = i+1;

break;

}

}

/* Check if this is the last data read */

if (last_data_read == FALSE)

{

buf_size = count-1;

time_deltaa = data_read[buf_size-1].irig_time;

data_write1.irig_time = data_read[buf_size-1].irig_time;

/* Move the file pointer to the right position for next data read */

offset = -data_buff_size;

fseek(fpin, offset, SEEK_CUR);

}

}

/***

* Subroutine determine_max_min() *

* *

* Description: *

* This subroutine determines Vmax and Vmin loads for the current data read. *

* Vi = Vmax if Vi > Vi-1 and Vi > Vi+1 *

* Vi = Vmin if Vi < Vi-1 and Vi < Vi+1 *

* In cases that Vi-1 < Vi < Vi+1 or Vi-1 > Vi > Vi+1, Vi is definitely not Vmax nor Vmin. *

* In these special cases, comparisons will continue beyond i+1 data point. When a Vmax *

* or Vmin is found, its IRIGB time and its value are written into the asc2 file and also *

* stored in two dimensional min_max_value arrays to be used later for calculating *

* crack growths. *

* *

**/

void determine_max_min()

{

char ch_name[] = " ";

float save_euc[MAXBUFS];

float calc_stress, min_max;

int i, j, k, l, index, start_index, cur_index;

short max_min_found;

/* Reset indicators and variables */

47

bzero((char *) (&processed_done), sizeof(processed_done));

bzero((char *) (&min_max_value), sizeof(min_max_value));

bzero((char *) (&min_max_time), sizeof(min_max_time));

/* For each channel */

for (j = 0; j < num_chans; j++)

{

bzero((char *) (&temp_euc), sizeof(temp_euc));

/* Load data into working temp_euc buffers */

if (do_calc[j] == TRUE)

{

if (last_data_read == FALSE)

{

for (i = 0; i < (buf_size+1); i++)

{

temp_euc[i] = data_read[i].euc_data[j];

}

}

else

{

for (i = 0; i < buf_size; i++)

{

temp_euc[i] = data_read[i].euc_data[j];

}

}

/* Determine max loads Vmax and min loads Vmin */

i = 0;

index = 0;

while ((i < buf_size) && (processed_done[j] == FALSE))

{

if (i == 0)

{

if (first_time == TRUE)

{

l = 0;

if (temp_euc[i] < temp_euc[i+1])

{

prev_type[j] = MIN;

48

prev_value[j] = temp_euc[i];

min_max_value[j][l] = temp_euc[i];

min_max_time[j][l] = data_read[i].irig_time;

index = i+1;

}

else if (temp_euc[i] > temp_euc[i+1])

{

prev_type[j] = MAX;

prev_value[j] = temp_euc[i];

min_max_value[j][l] = temp_euc[i];

min_max_time[j][l] = data_read[i].irig_time;

index = i+1;

}

else

{

max_min_found = FALSE;

for (k = (i+1); k < buf_size; k++)

{

if (temp_euc[k] > temp_euc[k+1])

{

max_min_found = TRUE;

prev_type[j] = MAX;

prev_value[j] = temp_euc[k];

min_max_value[j][l] = temp_euc[k];

min_max_time[j][l] = data_read[k].irig_time;

index = k+1;

break;

}

else if (temp_euc[k] < temp_euc[k+1])

{

max_min_found = TRUE;

prev_type[j] = MIN;

prev_value[j] = temp_euc[k];

min_max_value[j][l] = temp_euc[k];

min_max_time[j][l] = data_read[k].irig_time;

index = k+1;

break;

}

} /* for (k = (i+1); k < buf_size; k++) */

if (max_min_found == FALSE)

{

printf("\nChan %s has the same data value of %15.2f!!!\n",

chan_name[j], temp_euc[1]);

printf("crackGrowth program terminated!!!\n");

49

exit (0);

}

} /* if (temp_euc[i] < temp_euc[i+1]) */

} /* if (first_time == TRUE) */

else

{

l = 1;

min_max_value[j][0] = last_data[j];

min_max_time[j][0] = last_data_time[j];

if ((prev_value[j] == end_value[j]) && (prev_type[j] == end_type[j]))

{

if (temp_euc[i] < temp_euc[i+1])

{

if (prev_type[j] == MAX)

{

prev_type[j] = MIN;

prev_value[j] = temp_euc[i];

min_max_value[j][l] = temp_euc[i];

min_max_time[j][l] = data_read[i].irig_time;

index = i+1;

}

else

{

for (k = (i+1); k < buf_size; k++)

{

if (temp_euc[k] > temp_euc[k+1])

{

prev_type[j] = MAX;

prev_value[j] = temp_euc[k];

min_max_value[j][l] = temp_euc[k];

min_max_time[j][l] = data_read[k].irig_time;

index = k+1;

break;

}

}

}

}

else

{

if (prev_type[j] == MIN)

{

prev_type[j] = MAX;

prev_value[j] = temp_euc[i];

min_max_value[j][l] = temp_euc[i];

min_max_time[j][l] = data_read[i].irig_time;

50

index = i+1;

}

else

{

for (k = (i+1); k < buf_size; k++)

{

if (temp_euc[k] < temp_euc[k+1])

{

prev_type[j] = MIN;

prev_value[j] = temp_euc[k];

min_max_value[j][l] = temp_euc[k];

min_max_time[j][l] = data_read[k].irig_time;

index = k+1;

break;

}

} /* for (k = (i+1); k < buf_size; k++) */

} /* else */

}

}

else

{

if (temp_euc[i] < temp_euc[i+1])

{

if (temp_euc[i] < end_value[j])

{

prev_type[j] = MIN;

prev_value[j] = temp_euc[i];

min_max_value[j][l] = temp_euc[i];

min_max_time[j][l] = data_read[i].irig_time;

index = i+1;

}

else

{

for (k = (i+1); k < buf_size; k++)

{

if (temp_euc[k] > temp_euc[k+1])

{

prev_type[j] = MAX;

prev_value[j] = temp_euc[k];

min_max_value[j][l] = temp_euc[k];

min_max_time[j][l] = data_read[k].irig_time;

index = k+1;

break;

}

} /* for (k = (i+1); k < buf_size; k++) */

}

51

}/* if (temp_euc[i] < temp_euc[i+1]) */

else

{

if (temp_euc[i] > end_value[j])

{

prev_type[j] = MAX;

prev_value[j] = temp_euc[i];

min_max_value[j][l] = temp_euc[i];

min_max_time[j][l] = data_read[i].irig_time;

index = i+1;

}

else

{

for (k = (i+1); k < buf_size; k++)

{

if (temp_euc[k] < temp_euc[k+1])

{

prev_type[j] = MIN;

prev_value[j] = temp_euc[k];

min_max_value[j][l] = temp_euc[k];

min_max_time[j][l] = data_read[k].irig_time;

index = k+1;

break;

} /* if (temp_euc[k] < temp_euc[k+1]) */

} /* for (k = (i+1); k < buf_size; k++) */

}

}

}

} /* first_time == FALSE */

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

}

else if (i <= (buf_size-2))

{

if (temp_euc[i] > temp_euc[i+1])

{

if (prev_type[j] == MIN)

{

prev_type[j] = MAX;

prev_value[j] = temp_euc[i];

min_max_value[j][l] = temp_euc[i];

min_max_time[j][l] = data_read[i].irig_time;

index = i+1;

52

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

}

else

{

if ((i+1) >= (buf_size-1))

{

processed_done[j] = TRUE;

if (last_data_read == TRUE)

{

if (min_max_value[j][l-1] != temp_euc[buf_size-1])

{

min_max_value[j][l] = temp_euc[buf_size-1];

min_max_time[j][l] = data_read[buf_size-1].irig_time;

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

}

}

else

{

if (temp_euc[buf_size-1] < temp_euc[buf_size])

{

prev_type[j] = MIN;

end_type[j] = MIN;

prev_value[j] = temp_euc[buf_size-1];

end_value[j] = temp_euc[buf_size-1];

min_max_value[j][l] = temp_euc[buf_size-1];

min_max_time[j][l] = data_read[buf_size-1].irig_time;

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

}

else

{

end_type[j] = NONE;

end_value[j] = temp_euc[buf_size-1];

}

}

index = buf_size;

}

else

{

53

for (k = (i+1); k < buf_size; k++)

{

if (k < (buf_size-1))

{

if (temp_euc[k] < temp_euc[k+1])

{

prev_type[j] = MIN;

min_max_value[j][l] = temp_euc[k];

min_max_time[j][l] = data_read[k].irig_time;

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

index = k+1;

break;

}

}

else

{

processed_done[j] = TRUE;

if (last_data_read == TRUE)

{

if (min_max_value[j][l-1] != temp_euc[buf_size-1])

{

min_max_value[j][l] = temp_euc[buf_size-1];

min_max_time[j][l] = data_read[buf_size-1].irig_time;

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

}

} /* if (last_data_read == TRUE) */

else

{

if (temp_euc[buf_size-1] < temp_euc[buf_size])

{

prev_type[j] = MIN;

end_type[j] = MIN;

prev_value[j] = temp_euc[buf_size-1];

end_value[j] = temp_euc[buf_size-1];

min_max_value[j][l] = temp_euc[buf_size-1];

min_max_time[j][l] = data_read[buf_size-1].irig_time;

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

}

else

54

{

end_type[j] = NONE;

end_value[j] = temp_euc[buf_size-1];

}

}

index = buf_size;

}

}

}

}

}

else if (temp_euc[i] < temp_euc[i+1])

{

if (prev_type[j] == MAX)

{

prev_type[j] = MIN;

prev_value[j] = temp_euc[i];

min_max_value[j][l] = temp_euc[i];

min_max_time[j][l] = data_read[i].irig_time;

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

index = i+1;

l++;

}

else

{

if ((i+1) >= (buf_size-1))

{

processed_done[j] = TRUE;

if (last_data_read == TRUE)

{

if (min_max_value[j][l-1] != temp_euc[buf_size-1])

{

min_max_value[j][l] = temp_euc[buf_size-1];

min_max_time[j][l] = data_read[buf_size-1].irig_time;

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

}

} /* if (last_data_read == TRUE) */

else

{

if (temp_euc[buf_size-1] > temp_euc[buf_size])

{

prev_type[j] = MAX;

55

end_type[j] = MAX;

prev_value[j] = temp_euc[buf_size-1];

end_value[j] = temp_euc[buf_size-1];

min_max_value[j][l] = temp_euc[buf_size-1];

min_max_time[j][l] = data_read[buf_size-1].irig_time;

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

}

else

{

end_type[j] = NONE;

end_value[j] = temp_euc[buf_size-1];

}

}

index = buf_size;

}

else

{

for (k = (i+1); k < buf_size; k++)

{

if (k < (buf_size-1))

{

if (temp_euc[k] > temp_euc[k+1])

{

prev_type[j] = MAX;

prev_value[j] = temp_euc[k];

min_max_value[j][l] = temp_euc[k];

min_max_time[j][l] = data_read[k].irig_time;

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

index = k+1;

break;

}

}

else

{

processed_done[j] = TRUE;

if (last_data_read == TRUE)

{

if (min_max_value[j][l-1] != temp_euc[buf_size-1])

{

min_max_value[j][l] = temp_euc[buf_size-1];

min_max_time[j][l] = data_read[buf_size-1].irig_time;

56

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

}

} /* if (last_data_read == TRUE) */

else

{

if (temp_euc[buf_size-1] > temp_euc[buf_size])

{

prev_type[j] = MAX;

end_type[j] = MAX;

prev_value[j] = temp_euc[buf_size-1];

end_value[j] = temp_euc[buf_size-1];

min_max_value[j][l] = temp_euc[buf_size-1];

min_max_time[j][l] = data_read[buf_size-1].irig_time;

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

} /* if (temp_euc[buf_size-1] > temp_euc[buf_size]) */

else

{

end_type[j] = NONE;

end_value[j] = temp_euc[buf_size-1];

}

} /* if (last_data_read != TRUE) */

index = buf_size;

}

}

}

}

}

else /* temp_euc[i] = temp_euc[i+1] */

{

index = i + 1;

}

}

else if (i == (buf_size-1))

{

processed_done[j] = TRUE;

if (last_data_read == TRUE)

{

if (min_max_value[j][l-1] != temp_euc[buf_size-1])

{

min_max_value[j][l] = temp_euc[buf_size-1];

min_max_time[j][l] = data_read[buf_size-1].irig_time;

57

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

}

} /* if (last_data_read == TRUE) */

else

{

if (temp_euc[i] < temp_euc[i-1])

{

if (temp_euc[i] < temp_euc[i+1])

{

prev_type[j] = MIN;

prev_value[j] = temp_euc[i];

end_type[j] = MIN;

end_value[j] = temp_euc[i];

min_max_value[j][l] = temp_euc[i];

min_max_time[j][l] = data_read[i].irig_time;

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

}

else

{

end_type[j] = NONE;

end_value[j] = temp_euc[i];

}

}

else

{

if (temp_euc[i] > temp_euc[i+1])

{

prev_type[j] = MAX;

prev_value[j] = temp_euc[i];

end_type[j] = MAX;

end_value[j] = temp_euc[i];

min_max_value[j][l] = temp_euc[i];

min_max_time[j][l] = data_read[i].irig_time;

fprintf(fp_sigma_txt[j], " %9.3f %8.2f \n",

(float) min_max_time[j][l]/10000.0, min_max_value[j][l]);

l++;

}

else

{

end_type[j] = NONE;

end_value[j] = temp_euc[i];

}

58

}

} /* if (last_data_read != TRUE) */

index = buf_size;

}

if (min_max_value[j][l-1] <= 0.0)

{

strncpy(ch_name, chan_name[j], 10);

printf("\nChan %10s has BAD data %9.2f!! ", ch_name, min_max_value[j][l-1]);

printf("at Irigb time = %9.3f\n\n", (float) min_max_time[j][l-1]/10000.0);

printf("crackGrowth program terminated!!!\n");

exit (0);

}

i = index;

} /* while ((i < buf_size) && (processed_done[j] == FALSE)) */

write_index[j] = l;

last_data[j] = min_max_value[j][l-1];

last_data_time[j] = min_max_time[j][l-1];

} /* if (do_calc[j] == TRUE) */

} /* for (j = 0; j < num_chans; j++) */

}

/***

* Subroutine calculate_deltaa() *

* *

* Description: *

* This subroutine uses the Vmax and Vmin loads determined in subroutine *

* determine_max_min() to calculate half cycle crack growth delta a. It sums up all *

* calculated delta a to get the total crack growth size. It also determines the worst half *

* cycle ratio Ri = load_min / load_max during the period between takeoff run and cruise *

* power. The worst half cycle Vmax load will be used in calculating the number of *

* operational flights. *

* *

**/

void calculate_deltaa()

{

int i, j, k, l;

double Ai_1, pow_Kmax, pow_Ri, sqrt_value, double_const;

float Ri, Kmax, float_sum_deltaa;

float load_max, load_min, stress;

short cal_deltaa;

bzero((char *) (&deltaa), sizeof(deltaa));

double_const = 10000.0;

59

/* For each channel */

for (j = 0; j < num_chans; j++)

{

if (do_calc[j] == TRUE)

{

if (first_time == TRUE)

{

Ai_1 = apc[j];

sum_a[j] = apc[j];

}

else

{

Ai_1 = sum_a[j];

}

for (i = 1; i < write_index[j]; i++)

{

cal_deltaa = FALSE;

/* Determine the Vmax and Vmin in this half cycle */

if (min_max_value[j][i-1] < min_max_value[j][i])

{

load_min = min_max_value[j][i-1];

load_max = min_max_value[j][i];

cal_deltaa = TRUE;

}

else if (min_max_value[j][i-1] > min_max_value[j][i])

{

load_min = min_max_value[j][i];

load_max = min_max_value[j][i-1];

cal_deltaa = TRUE;

}

if (cal_deltaa == TRUE)

{

Ri = load_min / load_max;

/* Add the previous crack growth delta a to Ai_1 */

Ai_1 += deltaa[j][i-1];

/* Convert load into stress */

60

stress = stress_coef[j]*load_max;

/* Calculate crack growth delta a */

sqrt_value = sqrt((double) PI*Ai_1/Q);

Kmax = A*Mk*stress*(float) sqrt_value;

pow_Kmax = pow((double) Kmax, (double) m[j]);

pow_Ri = pow((double) (1.0-Ri), (double) n[j]);

deltaa[j][i] = C_OVER_2[j] * pow_Kmax * pow_Ri;

/* Add the current crack growth to the sum of delta a */

sum_deltaa[j] += deltaa[j][i];

sum_a[j] += deltaa[j][i];

/* Determine the worst half cycle */

if ((min_max_time[j][i-1] >= takeoff_time) &&

(min_max_time[j][i-1] <= cruise_time))

{

if (Ri < Ri_min[j])

{

Ri_min[j] = Ri;

Vmax[j] = load_max;

Vmin[j] = load_min;

Tmax[j] = min_max_time[j][i-1];

}

}

} /* if (cal_deltaa == TRUE) */

} /* for (i = 1; i < write_index[j]; i++) */

float_sum_deltaa = (float) double_const * sum_deltaa[j];

data_write1.euc_data[j] = double_const * sum_deltaa[j];

} /* if (do_calc[j] == TRUE) */

} /* for (j = 0; j < num_chans; j++) */

/* Write data into output file */

fwrite(&data_write1, data_buff_size, 1, fpout1);

if (first_time == TRUE)

{

first_time = FALSE;

}

}

/***

61

* Subroutine calculate_flights() *

* *

* Description: *

* This subroutine uses the worst half cycle Vmax for calculating the number of operational *

* flights based on the first flight load data. *

* *

**/

void calculate_flights()

{

int i, j;

float real_flight, remain;

double pow_f1, pow_a;

for (j = 0; j < num_chans; j++)

{

if (do_calc[j] == TRUE)

{

f[j] = Vmax[j] / Vstar[j];

pow_f1 = pow((double) f[j], (double) (m[j]-2.0));

numerator[j] = 1.0 - pow_f1;

pow_a = pow((double) (1.0 + (sum_deltaa[j]/apc[j])), (double) (1.0-(m[j]/2.0)));

denominator[j] = 1.0 - pow_a;

real_flight = numerator[j]/denominator[j];

remain = real_flight - (int) real_flight;

if (remain >= 0.5)

{

int_flight[j] = (int) real_flight + 1;

}

else

{

int_flight[j] = (int) real_flight;

}

}

}

}

/***

* Subroutine generate_summary() *

* *

* Description: *

* This subroutine generates a summary for all channels in the input file. The summary *

* contains the size of total crack growth, the number of operational flights, the operational *

* load factor, the worst half cycle Vmax, Vmin, and its IRIGB time. Additionally, the *

62

* numerator and the denominator that are used to calculate the number of operational *

* flights are also included in the summary. *

* *

**/

void generate_summary()

{

int i, j;

char name[NAMES_SIZE];

fwrite("B-52B hooks Crack Growth Flights f Vmax Vmin Irigb time\n\n",

strlen("B-52B hooks Crack Growth Flights f Vmax Vmin Irigb time\n\n"),

1, fpout2);

for (j = 0; j < num_chans; j++)

{

if (do_calc[j] == TRUE)

{

strncpy(name, chan_name[j], NAMES_SIZE);

fprintf(fpout2, "%s", name);

fprintf(fpout2, "%10.4e ", sum_deltaa[j]);

fprintf(fpout2, "%6d ", int_flight[j]);

fprintf(fpout2, " %7.4f ", f[j]);

fprintf(fpout2, " %9.2f ", Vmax[j]);

fprintf(fpout2, "%9.2f ", Vmin[j]);

fprintf(fpout2, "%9.3f\n", (float) Tmax[j]/10000.0);

}

}

fwrite("\n\n\nB-52B hooks Numerator Denominator\n\n",

strlen("\n\n\nB-52B hooks Numerator Denominator\n\n"), 1, fpout2);

for (j = 0; j < num_chans; j++)

{

if (do_calc[j] == TRUE)

{

strncpy(name, chan_name[j], NAMES_SIZE);

fprintf(fpout2, "%s", name);

fprintf(fpout2, "%10.4e ", numerator[j]);

fprintf(fpout2, "%10.4e\n", denominator[j]);

}

}

}

63

APPENDIX C
MATERIAL PROPERTIES

Material properties of B-52B pylon hooks and Pegasus adapter pylon hooks are listed in
Table C1 and Table C2.

Table C1. Material properties of B-52B pylon hooks and Pegasus adapter pylon hooks.

Component Material
σU
ksi

σY
ksi

τU
ksi

KIC

ksi in .

C
in .

cycle
ksi in .

m()− m n

B-52B front hook Inconel 718* 175 145 135 125 0.922×10–11 3.60 2.16

B-52B rear hooks AMAX MP35N^ 250 235 141 124 2.944×10–11 3.24 1.69

Pegasus hooks AMAX MP35N^ 250 235 141 124 2.944×10–11 3.24 1.69
* Inconel 718 is a registered trademark of Huntington Alloy Products Division, International Nickel Company,

	 West Virginia.

^ AMAX MP35N is a trademark of SPS Technologies, Inc., Jenkintown, Pennsylvania.

Table C2. Material properties of Inconel 718 and AMAX MP35Nalloys.

Material E, lb/in2 G, lb/in2 ν ρ, lb/in3 α, in/in-˚F

Inconel 718 29.60×106 ----- ----- 0.297 6.40×106

AMAX MP35N 34.05×106 11.74×106 0.39 0.322 7.10×106

64

FIGURES

B-52B wing

Front hook

Right rear hook
Left rear hook

B-52B pylon

B-52B pylon

B-52B airplane

Hyper-X
Delta wing

Pegasus pylon

Pegasus
 pylon hooks (4)Hyper-X launch vehicle

VA

VBR VBL

060325

Figure 1. The B-52B airplane carrying the winged Pegasus rocket/X-43 systems (40,000 lb).

0.60

0.5

a
2c

aφ
σ*
σY

Q

060326

2c

Negligible

=

 σ
σY

0.40

0.30

0.20
0.25

0.50

0.10

0
1.0 1.2548 1.5 2.0 2.2554 2.5

Q = [E(k)]2 – 0.212 ()2

E(k) = 1 – k2sin2 φ dφ ; k = 1 – ()

*

π
2 2

0
a
c

0.6
0.8
1.0

Figure 2. Surface flaw shape and plasticity factor for semi-elliptic surface cracks.

65

1
Full stress

cycle

Half stress
cycle

Variable-amplitude
stress cycles

1

1

2

2

2

2 2

3

3

3

4

4

4

4 4

5 6

6

6

6 6

7

7

7

8

8

8

8 8

1
3 3

5 5

5

5

9

9

77

060327

σmax

σmin

σmax

σmin

ΔK

ΔK

Figure 3. Resolution of random stress cycles into half stress cycles of different stress ranges.

66

R1 R2
R3R4

m
1

ΔK ΔK4

ΔK3

ΔK2
ΔK1

= C (ΔK)m (1 – R)n–m

da
dN 1

i
=δai

ap
c

δa1 δa2 δa3 δa4 ao
c

ΔK1 ΔK2

ΔK3 ΔK4

i
 = C [(Kmax)i]m (1 – Ri)

n

060328

(σmin)2 = (σmin)3

(σmax)1 = (σmax)2

(σmax)3 = (σmax)4

(σmin)4

(σmin)1

1
2

= C (ΔKi)
m (1 – Ri)

n–m

(Kmax)i = AMk(σmax)i

ΔKi = AMk [(σmax)i – (σmin)i]

 πai–1

Q

(σmin)i
(σmax)i

Ri =

ai–1 = ap +
i–1

δaj ; (i ≥ 2)Σ
j=1

c

 πai–1

Q

((

((da
dN 2

((da
dN 3

((da
dN 4

((da
dN

da
dN

da
dN

da
dN

((

Figure 4. Graphic evaluation of crack growths caused by random loading spectrum using the half-
cycle theory.

67

Front hook

Region
modeled

Groove
 boundary

060329

6.040 in

h = 1.0 in

h = 1.188 in

2.343 in

0.3125 R

VA

Figure 5. Geometry of B-52B pylon front hook.

060330

σt,
lb/in2

σt

0

0
0 1.0 1.5

–0.5

–1.0 x 105

0.5

1.0

0.5 1.0 x 105

(–)

Load
 application
 point

Thickness
 transition line

0.50.5

θc = 26.25°θc = 26.25°

(σt)max = 0.73533 x 105 lb/in2

(σt)max = 7.3522 x 10–3 VA

(+)

Figure 6. Distribution of tangential stress, σt , along the inner boundary of the B-52B pylon front
hook; VA =10,000 lb.

68

060331

h = 1.0 in

h = 1.1 in

Thickness
 transition
 line

Region
modeled

0.5 R

New rear
 hook

3.40 in

6.154 in

VBL

Figure 7. Geometry of the B-52B pylon rear hook.

060332

σt,
lb/in2

σt

0

0

0

0

–0.5

0.5
1

–1.0 x 105

–0.5

0.5

1.0

0.5 –0.5 x 105

(+)

Load
 application point

Thickness
 transition
 point

(–)

θc = 28.75°

(σt)max = 1.004 x 105 lb/in2

(σt)max = 5.8442 x 10–3 VBL

Figure 8. Distribtuion of tangential stress, σt , along the inner boundary of a typical B-52B pylon
rear hook; VBL =17,179.53 lb.

69

060333

3.88 in

3.62 in

1.38 in

h = 2.00 in

0.76 in

0.76 in

0.40 in
13.86°

0.51 in. radius

2.64 in
1.13 in

3.48 in. radius

Figure 9. Geometry of the Pegasus pylon hook.

060334

Critical
 stress
 point

x

(σt)max = 2.4459 x 10–3 VPFL

(σt)max = 141.420 ksi

σ t, k
si

VPFL = 57,819 lb
distributed

y

60 80 100 120 140 160 180

400

θc = –20.76°

Figure 10. Distribution of tangential stress, σt , along the inner boundary of a typical Pegasus .
pylon hook; VPFL =57,819 lb.

70

25,000

20,000

VA, lb

σA = 7.3522 x 10–3 VA

15,000

1 s Time, s

Worst half cycle

f = 0.4949

10,000

5,000

060335

V o
max

V o
min

Figure 11. Loading spectrum of the B-52B front hook (VA) carrying the Hyper-X launching ve-
hicle during takeoff.

25,000

20,000VBL, lb

σBL = 5.8442 x 10–3 VBL

15,000

1 s Time, s

Worst half cycle

f = 0.4017

10,000

30,000

060336

V o
max

V o
min

Figure 12. Loading spectrum of the B-52B rear left hook (VBL) carrying the Hyper-X launch
vehicle during takeoff.

71

25,000

20,000

VBR, lb

σBR = 5.8442 x 10–3 VBR

15,000

1 s Time, s

Worst half cycle

f = 0.3270

10,000

060337

V o
max

V o
min

Figure 13. Loading spectrum of the B-52B rear right hook (VBR) carrying the Hyper-X launching
vehicle during takeoff.

40,000

35,000

VPFL, lb

σPFL = 2.4459 x 10–3 VPFL

30,000

1 s Time, s

Worst half cycle

f = 0.4582

25,000

060338

V o
max

V o
min

Figure 14. Loading spectrum of the Pegasus pylon front left hook (VPFL) carrying the Hyper-X
launching vehicle during takeoff.

72

40,000

35,000

VPFR, lb

σPFR = 2.4459 x 10–3 VPFR

30,000

1 s Time, s

Worst half cycle

f = 0.4616

25,000

060339

V o
max

V o
min

Figure 15. Loading spectrum of the Pegasus pylon front right hook (VPFR) carrying the Hyper-X
launching vehicle during takeoff.

25,000

20,000

VPRL, lb

σPRL = 2.4459 x 10–3 VPRL

15,000

1 s Time, s

Worst half cycle

f = 0.2824

10,000

060340

V o
max

V o
min

Figure 16. Loading spectrum of the Pegasus pylon rear left hook (VPRL) carrying Hyper-X
launching vehicle during takeoff.

73

25,000

20,000

VPRR, lb

σPRR = 2.4459 x 10–3 VPRR

15,000

1 s Time, s

Worst half cycle

f = 0.2855

10,000

060341

V o
max

V o
min

Figure 17. Loading spectrum of the Pegasus pylon rear right hook (VPRR) carring the Hyper-X
launching vehicle during takeoff.

3.00 0.06940

0.06935

0.06930

0.06925

0.06920

0.06915

0.06910

2.50

2.00

1.50

1.00

0.50

0

x 10–4

Stop taxiing
Resume taxiing

Cruise power

Gust

Δa,
in

Crack
length,

in

Drop of HXLV

Time, min
2010 30 40 50 60 70 80 90 100 110

060342

Δa1 = 1.9258 x 10–4 in

0
Start taxiing

Takeoff run

Figure 18. Crack growth curve for the B-52B front hook (VA); B-52B carrying the Hyper-X
launching vehicle; air-launching flight.

74

3.00 0.04315

0.04310

0.04305

0.04300

0.04295

0.04290

2.50

2.00

1.50

1.00

0.50

0

x 10–4

Start taxiing

Stop taxiing
Resume taxiing

Takeoff run
Cruise power

Gust
Crack
length,

in

Drop of HXLV

Time, min
2010 30 40 50 60 70 80 90 100 110

060343

Δa1 = 2.5367 x 10–4 in

0

Δa,
in

Figure 19. Crack growth curve for the B-52B rear left hook (VBL); B-52B carrying the Hyper-X
launching vehicle; air-launching flight.

3.00 0.04315

0.04310

0.04305

0.04300

0.04295

0.04290

2.50

2.00

1.50

1.00

0.50

0

x 10–4

Start taxiing

Stop taxiing
Resume taxiing

Takeoff run
Cruise power

Gust

Crack
length,

in

Drop of HXLV

Time, min
2010 30 40 50 60 70 80 90 100 110

060344

Δa1 = 2.5734 x 10–4 in

0

Δa,
in

Figure 20. Crack growth curve for the B-52B rear right hook (VBR); B-52B carrying the Hyper-X
launching vehicle; air-launching flight.

75

3.00 0.14580

0.14575

0.14570

0.14565

0.14560

0.14555

0.14550

2.50

2.00

1.50

1.00

0.50

0

x 10–4

Start taxiing

Stop taxiing
Resume taxiing

Cruise power

Gust

Crack
length,

in
Drop of HXLV

Time, min
2010 30 40 50 60 70 80 90 100 110

060345

Δa1 = 1.6680 x 10–4 in

Takeoff run

0

Δa,
in

Figure 21. Crack growth curve for the Pegasus pylon front left hook (VPFL); B-52B carrying the
Hyper-X launching vehicle; air-launching flight.

3.00

2.50

2.00

1.50

1.00

0.50

0

x 10–4

Start taxiing

Resume taxiing
Takeoff run

Cruise power

Gust

Drop of HXLV

Time, min
2010 30 40 50 60 70 80 90 100 110

060346

Δa1 = 1.8326 x 10–4 in

0.14580

0.14575

0.14570

0.14565

0.14560

0.14555

0.14550

Crack
length,

in

Stop taxiing

0

Δa,
in

Figure 22. Crack growth curve for the Pegasus pylon front right hook (VPFR); B-52B carrying the
Hyper-X launching vehicle; air-launching flight.

76

3.00

2.50

2.00

1.50

1.00

0.50

0

x 10–4

Start taxiing

Stop taxiing
Resume taxiing

Takeoff run
Cruise power Gust

Drop of HXLV

Time, min
2010 30 40 50 60 70 80 90 100 110

060347

Δa1 = 1.4053 x 10–4 in

0.14580

0.14575

0.14570

0.14565

0.14560

0.14555

0.14550

Crack
length,

in

0

Δa,
in

Figure 23. Crack growth curve for the Pegasus pylon rear left hook (VPRL); B-52B carrying the
Hyper-X launching vehicle; air-launching flight.

3.00

2.50

2.00

1.50

1.00

0.50

0

x 10–4

Start taxiing

Stop taxiing
Resume taxiing

Takeoff run

Cruise power

Gust

Drop of HXLV

Time, min
2010 30 40 50 60 70 80 90 100 110

060348

Δa1 = 1.5441 x 10–4 in

0.14580

0.14575

0.14570

0.14565

0.14560

0.14555

0.14550

Crack
length,

in

0

Δa,
in

Figure 24. Crack growth curve for the Pegasus pylon rear right hook (VPRR); B-52B carrying the
the Hyper-X launching vehicle; air-launching flight.

77

7.00

6.00

5.00

4.00

3.00

2.00

1.00

0

x 10–4

Start taxiing

Resume taxiing

Cruise
 power

 Simulated launch

Stop

Touchdown

Aircraft
 maneuver

Time, min
4020 60 80 100 120 140 160 180 200

060349

Δa1 = 6.7226 x 10–4 in 0.0698

0.0696

0.0697

0.0695

0.0694

0.0693

0.0692

0.0691

Crack
length,

in

Takeoff run
Stop taxiing

Stop taxiing

Gust 2

Gust 3
Gust 4

Gust 5
Gust 1

Landing
phase

Takeoff
phase

0

Δa,
in

Figure 25. Crack growth curve for the Pegasus pylon front hook (VA); B-52B carrying the Hyper‑X
launching vehicle; captive flight.

6.00

5.00

4.00

3.00

2.00

1.00

0

x 10–4

Start taxiing

Resume taxiing

Cruise
 power

 Simulated launch

Stop

Touchdown

Aircraft
 maneuver

Time, min
4020 60 80 100 120 140 160 180 200

060350

Δa1 = 5.9540 x 10–4 in

0

0.0435

0.0433

0.0434

0.0432

0.0431

0.0430

0.0429

Crack
length,

in

Takeoff run

Stop taxiing

Gust 2
Gust 3

Gust 4

Gust 5

Gust 1

Stop taxiing

Landing
phase

Takeoff
phase

Δa,
in

Figure 26. Crack growth curve for the B-52B rear left hook (VBL); B-52B carrying the Hyper-X
launching vehicle; captive flight.

78

6.00

5.00

4.00

3.00

2.00

1.00

0

x 10–4

Start taxiing

Cruise
 power

 Simulated launch

Stop

Touchdown

Aircraft
 maneuver

Time, min
4020 60 80 100 120 140 160 180 200

060351

Δa1 = 5.8556 x 10–4 in

Takeoff run
Stop taxiing

Stop taxiing

Gust 2

Gust 3
Gust 4

Gust 5

Gust 1

0.0435

0.0433

0.0434

0.0432

0.0431

0.0430

0.0429

Crack
length,

in

Resume taxiing

0

Landing
phase

Takeoff
phase

Δa,
in

Figure 27. Crack growth curve for the B-52B rear right hook (VBR); B-52B carrying the Hyper-X
launching vehicle; captive flight.

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0

x 10–4

Start taxiing

Resume taxiing

Cruise
 power

 Simulated launch

Stop

Touchdown

Aircraft
 maneuver

Time, min
4020 60 80 100 120 140 160 180 200

060352

Δa1 = 3.1151 x 10–4 in

0.14585

0.14575

0.14580

0.14570

0.14565

0.14560

0.14555

0.14550

Crack
length,

in

Takeoff run
Stop taxiing

Stop taxiing

Gust 2

Gust 3
Gust 4

Gust 5
Gust 1

Landing
phase

Takeoff
phase

0

Δa,
in

Figure 28. Crack growth curve for the Pegasus pylon front left hook (VPFL); B-52B carrying the
Hyper-X launching vehicle; captive flight.

79

x 10–4

Start taxiing

Cruise
 power

 Simulated launch

Stop

Touchdown

Aircraft
 maneuver

Time, min
4020 60 80 100 120 140 160 180 200

060353

Δa1 = 3.3859 x 10–4 in

Takeoff run
Stop taxiing

Stop taxiing

Gust 2

Gust 3
Gust 4

Gust 5
Gust 1

0.14585

0.14575

0.14580

0.14570

0.14565

0.14560

0.14555

0.14550

Crack
length,

in

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0

Resume taxiing

0

Landing
phase

Takeoff
phase

Δa,
in

Figure 29. Crack growth curve for the Pegasus pylon front right hook (VPFR); B-52B carrying the
Hyper-X launching vehicle; captive flight.

x 10–4

Start taxiing

Cruise
 power

 Simulated launch

Stop

Touchdown
Aircraft
 maneuver

Time, min
4020 60 80 100 120 140 160 180 200

060354

Δa1 = 3.1070 x 10–4 in

Takeoff run

Stop taxiing

Stop taxiing

Gust 2

Gust 3
Gust 4

Gust 5Gust 1

0.14585

0.14575

0.14580

0.14570

0.14565

0.14560

0.14555

0.14550

Crack
length,

in

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0

Resume taxiing

0

Landing
phase

Takeoff
phase

Δa,
in

Figure 30. Crack growth curve for the Pegasus pylon rear left hook (VPRL); B-52B carrying the
Hyper-X launching vehicle; captive flight.

80

x 10–4

Start taxiing

Cruise
 power

 Simulated launch

Stop

Touchdown
Aircraft
 maneuver

Time, min
4020 60 80 100 120 140 160 180 200

060355

Δa1 = 3.3090 x 10–4 in

0

Landing
phase

Takeoff
phase

Takeoff run
Stop taxiing

Stop taxiing

Gust 2

Gust 3
Gust 4

Gust 5

Gust 1

0.14585

0.14575

0.14580

0.14570

0.14565

0.14560

0.14555

0.14550

Crack
length,

in

3.50

3.00

2.50

2.00

1.50

1.00

0.50

0

Resume taxiing

Δa,
in

Figure 31. Crack growth curve for the Pegasus pylon rear right hook (VPRR); B-52B carrying the
Hyper-X launching vehicle; captive flight.

81

REFERENCES
REFERENCES

1. Ko, William L., A. L. Carter, W. W. Totton, and J. M. Ficke, Application of

Fracture Mechanics and Half-Cycle Method to the Prediction of Fatigue Life of

B-52 Aircraft Pylon Components, NASA TM-88277, 1989.

2. Ko, William L., Prediction of Service Life of Aircraft Structural Components

Using the Half-Cycle Method, NASA TM-86812, 1987.

3. Ko, William L. and Richard Monaghan, Practical Theories for Service Life

Prediction of Critical Aerospace Structural Components, NASA TM-4354, 1992.

4. Ko, William L., Richard C. Monaghan, and Raymond H. Jackson, Practical

Theories for Service Life Predictions of Critical Aerospace Structural

Components. Presented at the 4th International Conference on Structural Failure,

Product Liability and Technical Insurance, Vienna, Austria, July 6–9, 1992.

Reprinted from Rossmanith, H. P., Structural Failure, Product Liability and

Technical Insurance IV, Elsevier Science Publishers, Amsterdam, the

Netherlands, pp. 495–504, July 1993.

5. Ko, William L., Aging Theories for Establishing Safe Life Spans of Airborne

Critical Structural Components, NASA TP-212034, 2003.

6. Ko, William L. and Tony Chen, Extended Aging Theories for Predictions of Safe

Operational Life of Critical Airborne Structural Components, NASA TP-2006-

213676, 2006.

7. Ko, William L. and Lawrence S. Schuster, Stress Analyses of B-52 Pylon Hooks,

NASA TM-84924, 1985.

8. Ko, William L., Stress Analysis of B-52B and B-52H Air-Launching Systems

Failure-Critical Structural Components, NASA TP-2005-212862, 2005.

9. Ko, William L., Stress Analysis of B-52 Pylon Hooks for Carrying the X-38 Drop

Test Vehicle, NASA/TM-97-206218, 1997.

10. Hodgeman, Charles D., Standard Mathematical Tables, 11th ed, Chemical

Rubber Publishing Co., Cleveland, Ohio, pg. 252, 1957.

11. Barrois, W. and E. L. Ripley, Fatigue of Aircraft Structures, The Macmillan Co.,

New York, 1963.

12. Starky, W. L. and S. M. Marco, Effects of Complex Stress-Time Cycles on the

Fatigue Properties of Metals. Transaction of the ASME, pp. 1329–1336, August

1957.

.,

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

1. REPORT DATE (DD-MM-YYYY)
31-01-2007

2. REPORT TYPE
Technical Publication

 4. TITLE AND SUBTITLE
Incorporation of Half-Cycle Theory Into Ko Aging Theory for Aerostructural
Flight-Life Predictions

5a. CONTRACT NUMBER

 6. AUTHOR(S)

Ko, William L.; Tran, Van T.; and Chen, Tony

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Dryden Flight Research Center
P.O. Box 273
Edwards, California 93523-0273

 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001!

 8. PERFORMING ORGANIZATION
 REPORT NUMBER

H-2673

10. SPONSORING/MONITOR'S ACRONYM(S)

NASA!

13. SUPPLEMENTARY NOTES
Ko, Tran, Chen, Dryden Flight Research Center

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified -- Unlimited
Subject Category 39 Availability: NASA CASI (301) 621-0390! Distribution: Standard

19a. NAME OF RESPONSIBLE PERSON

STI Help Desk (email: help@sti.nasa.gov)!

14. ABSTRACT

The half-cycle crack growth theory was incorporated into the Ko closed-form aging theory to improve accuracy in the predictions of
operational flight life of failure-critical aerostructural components. A new crack growth computer program was written for reading
the maximum and minimum loads of each half-cycle from the random loading spectra for crack growth calculations and generation
of in-flight crack growth curves. The unified theories were then applied to calculate the number of flights (operational life) permitted
for B-52B pylon hooks and Pegasus® adapter pylon hooks to carry the Hyper-X launching vehicle that air launches the X-43 Hyper-
X research vehicle. A crack growth curve for each hook was generated for visual observation of the crack growth behavior during the
entire air-launching or captive flight. It was found that taxiing and the takeoff run induced a major portion of the total crack growth
per flight. The operational life theory presented can be applied to estimate the service life of any failure-critical structural
components.��
15. SUBJECT TERMS
Crack growth curves, Fatigue cracks, Half-cycle theory, Operational life predictions, Structural aging theory

18. NUMBER
 OF
 PAGES

88
19b. TELEPHONE NUMBER (Include area code)

(301) 621-0390

a. REPORT

U

c. THIS PAGE

U

b. ABSTRACT

U

17. LIMITATION OF
 ABSTRACT

UU

Prescribed by ANSI Std. Z39-18
Standard Form 298 (Rev. 8-98)

3. DATES COVERED (From - To)

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

11. SPONSORING/MONITORING
 REPORT NUMBER

NASA/TP-2007-214608

16. SECURITY CLASSIFICATION OF:

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services,
Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware
that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a
currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

	COVER PAGE
	TITLE PAGE
	CONTENTS
	ABSTRACT
	NOMENCLATURE
	INTRODUCTION
	THE B-52B AIRPLANE CARRYING THE HYPER-X LAUNCH VEHICLE
	THE KO CLOSED-FORM AGING THEORY
	Failure-Critical Structural Components
	Stress/Load Equation
	Operational Load Factor
	Crack Size Determinations
	The Ko Operational Life Equation
	The Ko Operational Life Theory Flow Chart

	HALF-CYCLE CRACK GROWTH THEORY
	The Walker Crack Growth Equation
	The Half-Cycle Crack Growth Equation

	CRACK GROWTH COMPUTER PROGRAM
	OPERATIONAL LIFE ANALYSIS
	The B-52B and Pegasus Pylon Hooks
	Flight Load Spectra
	Crack Growth Calculations
	Number of Operational Flights

	RESULTS
	Crack Growth Curves
	Air-Launching Flight
	Captive Flight

	Number of Operational Flights
	Air-Launching Flight
	Captive Flight

	CONCLUSIONS
	APPENDIX A OPERATIONAL LIFE EQUATIONS
	APPENDIX B CRACK GROWTH COMPUTER PROGRAM
	APPENDIX C MATERIAL PROPERTIES
	FIGURES
	REFERENCES
	REPORT DOCUMENTATION PAGE

